Respiratory System Model Parameters Track Changes in Lung Function after Bronchodilation

Author(s):  
E. Meraz ◽  
H. Nazeran ◽  
M. Goldman ◽  
B. Diong
Author(s):  
Dr. Vishal Shamrao Patil ◽  
Dr. (Mrs.) Manisha V. Bhalsing

Lung function tests are useful in assessing the functional status of Respiratory system in both in physiological as well as pathological conditions. These are based on the measurement of volume of air breathed in and out in quite breathing & forced breathing. Air in lungs is classified in to two divisions’ lung volumes & lung capacities. Lung Capacities are the combination of two or more lung volumes. The concept of Rakt Dhatu & Vayu is important in case of respiration because Charaka says that pure blood provides the person with strength, luster & happy life because vital breath follows blood. It represents mechanism of oxygenated & deoxygenated blood & its relation with functioning capacity of Lungs. So In this article attempt has been made to review concepts regarding functions of Rakt Dhatu & Vayu to Establish Lung Function Capacity.


1991 ◽  
Vol 18 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Murray A. Fitch ◽  
Edward A. McBean

A model is developed for the prediction of river flows resulting from combined snowmelt and precipitation. The model employs a Kalman filter to reflect uncertainty both in the measured data and in the system model parameters. The forecasting algorithm is used to develop multi-day forecasts for the Sturgeon River, Ontario. The algorithm is shown to develop good 1-day and 2-day ahead forecasts, but the linear prediction model is found inadequate for longer-term forecasts. Good initial parameter estimates are shown to be essential for optimal forecasting performance. Key words: Kalman filter, streamflow forecast, multi-day, streamflow, Sturgeon River, MISP algorithm.


2014 ◽  
Vol 556-562 ◽  
pp. 294-301 ◽  
Author(s):  
Long Han ◽  
Chun Tian ◽  
Yan Wang ◽  
Meng Ling Wu ◽  
Zhuo Jun Luo

This paper deals with the problem of braking process modeling. A subway train braking process simulation software is built, which composes of a GUI and a underlying model. The underlying model consists of a train model and a brake system model. The train model is simplified and built by assembling subcomponent element models of a railway vehicle. The brake system model is simplified and built based on experimental data in order to reduce computational effort. The GUI of the software can be use to input model parameters, display simulation results, and store simulation data. As a result of the simplifications of the modeling process, the developed software can perform real time simulation.


Author(s):  
Richard Pasteka ◽  
Joao Pedro Santos da Costa ◽  
Mathias Forjan

Dry powder inhalers are used by a large number of patients worldwide to treat respiratory diseases. The objective of this work is to experimentally investigate changes in aerosol particle diameter and particle number concentration of pharmaceutical aerosols generated by five dry powder inhalers under realistic inhalation and exhalation conditions. The active respiratory system model (xPULM™) was used as a model of the human respiratory system and to simulate a patient undergoing inhalation therapy. A mechanical upper airway model was developed, manufactured and introduced as a part of the xPULM™ to represent the human upper respiratory tract with high fidelity. Integration of optical aerosol spectrometry technique into the setup allowed for evaluation of pharmaceutical aerosols. The results show that the upper airway model increases the resistance of the overall system and act as a filter for bigger particles (>3 µm). Furthermore, there is a significant difference (p < 0.05) in mean particle diameter between inhaled and exhaled particles with the majority of the particles depositing in the lung. The minimum deposition is reached for particle size of 0.5 µm. The mean particle number concentrations exhaled are 2.94% (BreezHaler®), 2.66% (Diskus®), 10.24% (Ellipta®) 2.13% (HandiHaler®) and 6.22% (Turbohaler®). In conclusion, the xPULM™ active respiratory system model is a viable option for studying interactions of pharmaceutical aerosols and the respiratory tract in terms of applicable deposition mechanisms. The model can support the reduction of animal experimentation in aerosol research and provide an alternative to experiments with human subjects.


1994 ◽  
Vol 76 (4) ◽  
pp. 1432-1438 ◽  
Author(s):  
M. J. Finney ◽  
K. I. Forsberg

We have developed a technique for measuring lung function in conscious guinea pigs using a whole body plethysmograph. Because guinea pigs breathe through the nose, a technique was also developed to measure nasal and lower respiratory system conductance simultaneously in anesthetized animals. The upper and the lower airways could be challenged separately and studied in a manner similar to the conditions in the plethysmograph. Aerosols of histamine, carbachol, or ovalbumin delivered to the nose in sensitized animals had no effect on nasal conductance, even in doses 100 times higher than that required to reduce lower respiratory system conductance. However, intravenous histamine increased nasal conductance. Thus, although nasal resistance constitutes the majority of the total respiratory system resistance measured in the plethysmograph, nasal resistance is unaffected by the aerosol drugs studied. We therefore consider changes in resistance measured in the plethysmograph to originate at or below the larynx. The plethysmographic technique described here is a reliable, reproducible, and rapid technique that enables repeated measurement in animals and minimizes animal trauma.


Sign in / Sign up

Export Citation Format

Share Document