Simulation and Simulation Software Development of the Braking Process of a Subway Train

2014 ◽  
Vol 556-562 ◽  
pp. 294-301 ◽  
Author(s):  
Long Han ◽  
Chun Tian ◽  
Yan Wang ◽  
Meng Ling Wu ◽  
Zhuo Jun Luo

This paper deals with the problem of braking process modeling. A subway train braking process simulation software is built, which composes of a GUI and a underlying model. The underlying model consists of a train model and a brake system model. The train model is simplified and built by assembling subcomponent element models of a railway vehicle. The brake system model is simplified and built based on experimental data in order to reduce computational effort. The GUI of the software can be use to input model parameters, display simulation results, and store simulation data. As a result of the simplifications of the modeling process, the developed software can perform real time simulation.

2014 ◽  
Vol 1056 ◽  
pp. 177-181
Author(s):  
Liang Xu ◽  
Rui Guo ◽  
Xiao Liu

Model validation needs effective and efficient after development of the brake model. For the relatively high cost and limited coverage of test condition of the experimental verification, a virtual test environment of the brake system is established by using the vehicle model and the graphical interface of mature vehicle dynamics simulation software Carsim. Firstly, the brake system model is encapsulated into a dynamic link library. Then the new brake model according to the relationship between input and output of the brake system and vehicle through the S-function is integrated with Carsim vehicle model in Matlab/Simulink, replacing the Carsim brake model. Finally, the mixed model is verified though comparing with Carsim vehicle model in the same operation condition. The simulation results show that the validation and verification method are effective and low cost.


2014 ◽  
Vol 8 (1) ◽  
pp. 197-200 ◽  
Author(s):  
Wang Zhi-Chen ◽  
Song Ying ◽  
Wang Jian-Xi

Based on the vehicle-track coupled dynamics theory and the corresponding simulation software ADAMS/Rail software package, a vehicle-track coupling system model is established, and the track irregularity is introduced to the coupling system model as an excitation source. Firstly, the dynamic responses of speed-increased railway vehicle and track components due to different types of track irregularity are obtained. Secondly, the sensitive wavelength of different track irregularities in high-speed operation is discussed. Finally, suggestions about the maximum operation speed to meet the standards value of daily maintenance target, comfortable value, emergency repair and speed management target are put forward.


2021 ◽  
Vol 13 (8) ◽  
pp. 4572
Author(s):  
Jiří David ◽  
Pavel Brom ◽  
František Starý ◽  
Josef Bradáč ◽  
Vojtěch Dynybyl

This article deals with the use of neural networks for estimation of deceleration model parameters for the adaptive cruise control unit. The article describes the basic functionality of adaptive cruise control and creates a mathematical model of braking, which is one of the basic functions of adaptive cruise control. Furthermore, an analysis of the influences acting in the braking process is performed, the most significant of which are used in the design of deceleration prediction for the adaptive cruise control unit using neural networks. Such a connection using artificial neural networks using modern sensors can be another step towards full vehicle autonomy. The advantage of this approach is the original use of neural networks, which refines the determination of the deceleration value of the vehicle in front of a static or dynamic obstacle, while including a number of influences that affect the braking process and thus increase driving safety.


1991 ◽  
Vol 18 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Murray A. Fitch ◽  
Edward A. McBean

A model is developed for the prediction of river flows resulting from combined snowmelt and precipitation. The model employs a Kalman filter to reflect uncertainty both in the measured data and in the system model parameters. The forecasting algorithm is used to develop multi-day forecasts for the Sturgeon River, Ontario. The algorithm is shown to develop good 1-day and 2-day ahead forecasts, but the linear prediction model is found inadequate for longer-term forecasts. Good initial parameter estimates are shown to be essential for optimal forecasting performance. Key words: Kalman filter, streamflow forecast, multi-day, streamflow, Sturgeon River, MISP algorithm.


2001 ◽  
Author(s):  
Lezza Mignery ◽  
Jishen Wang ◽  
Jim Luo
Keyword(s):  

2019 ◽  
Vol 10 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Daniel Varecha ◽  
Robert Kohar ◽  
Frantisek Brumercik

Abstract The article is focused on braking simulation of automated guided vehicle (AGV). The brake system is used with a disc brake and with hydraulic control. In the first step, the formula necessary for braking force at the start of braking is derived. The stopping distance is 1.5 meters. Subsequently, a mathematical model of braking is created into which the formula of the necessary braking force is applied. The mathematical model represents a motion equation that is solved in the software Matlab by an approximation method. Next a simulation is created using Matlab software and the data of simulation are displayed in the graph. The transport speed of the vehicle is 1 〖m.s〗^(-1) and the weight of the vehicle is 6000 kg including load. The aim of this article is to determine the braking time of the device depending from the input data entered, which represent the initial conditions of the braking process.


Author(s):  
A. Hamed ◽  
A. Hazzab

<span lang="EN-US">This paper presents the modeling and real-time simulation of an induction motor. The RT- LAB simulation software enables the parallel simulation of power drives and electric circuits on clusters of a PC running QNX or RT- Linux operating systems at sample time below 10 µs. Using standard Simulink models including SimPowerSystems models, RT-LAB build computation and communication tasks are necessary to make parallel simulation of electrical systems. The code generated by the Real-Time Workshop of RT- LAB is linked to the OP5600 digital real-time simulator. A case study example of real-time simulation of an induction motor system is presented.This paper discusses methods to overcome the challenges of real-time simulation of an induction motor system synchronizing with a real-time clock.</span>


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092264
Author(s):  
Jie Chen ◽  
Yangjun Wu ◽  
Xiaolong He ◽  
Limin Zhang ◽  
Shijie Dong

In this article, a vertical rigid–flexible coupling model between the vehicle and the equipment is established. Considering the series stiffness of hydraulic shock absorbers, the underframe equipment is like a three-element-type Maxwell model dynamic vibration absorber. The carbody is approximated by an elastic beam and the three-element-type dynamic vibration absorber for general beam system was studied by fixed-point theory. The analytical solution of the optimal suspension parameters for the beam system subjected to harmonic excitation is obtained. The dynamic vibration absorber theory is applied to reduce the resonance of the carbody and to design the suspension parameters of the underframe equipment accordingly. Then, the railway vehicle model was established by multi-body dynamics simulation software, and the vibration levels of the vehicle at different speeds were calculated. A comparative analysis was made between the vehicles whose underframe equipment was suspended by the three-element-type dynamic vibration absorber model and the Kelvin–Voigt-type dynamic vibration absorber model, respectively. The results show that, compared with the vehicle whose underframe equipment is suspended by the Kelvin–Voigt-type dynamic vibration absorber model, the vehicle whose underframe equipment is suspended by the three-element-type dynamic vibration absorber model can achieve a much better ride quality and root mean square value of the vibration acceleration of the carbody. The carbody elastic vibration can be reduced and the vehicle ride quality can be improved effectively using the designed absorber.


Author(s):  
Martin Mergili ◽  
Michel Jaboyedoff ◽  
José Pullarello ◽  
Shiva P. Pudasaini

Abstract. In the morning of 23 August 2017, around 3 million m3 of granitoid rock broke off from the east face of Piz Cengalo, SE Switzerland. The initial rock slide-rock fall entrained 0.6 million m3 of a glacier and continued as a rock(-ice) avalanche, before evolving into a channelized debris flow that reached the village of Bondo at a distance of 6.5 km after a couple of minutes. Subsequent debris flow surges followed in the next hours and days. The event resulted in eight fatalities along its path and severely damaged Bondo. The most likely candidates for the water causing the transformation of the rock avalanche into a long-runout debris flow are the entrained glacier ice and water originating from the debris beneath the rock avalanche. In the present work we try to reconstruct conceptually and numerically the cascade from the initial rock slide-rock fall to the first debris flow surge and thereby consider two scenarios in terms of qualitative conceptual process models: (i) entrainment of most of the glacier ice by the frontal part of the initial rock slide-rock fall and/or injection of water from the basal sediments due to sudden rise in pore pressure, leading to a frontal debris flow, with the rear part largely remaining dry and depositing mid-valley; and (ii) most of the entrained glacier ice remaining beneath/behind the frontal rock avalanche, and developing into an avalanching flow of ice and water, part of which overtops and partially entrains the rock avalanche deposit, resulting in a debris flow. Both scenarios can be numerically reproduced with the two-phase mass flow model implemented with the simulation software r.avaflow, based on plausible assumptions of the model parameters. However, these simulation results do not allow to conclude on which of the two scenarios is the more likely one. Future work will be directed towards the application of a three-phase flow model (rock, ice, fluid) including phase transitions, in order to better represent the melting of glacier ice, and a more appropriate consideration of deposition of debris flow material along the channel.


Sign in / Sign up

Export Citation Format

Share Document