Quantification of nasal involvement in a guinea pig plethysmograph

1994 ◽  
Vol 76 (4) ◽  
pp. 1432-1438 ◽  
Author(s):  
M. J. Finney ◽  
K. I. Forsberg

We have developed a technique for measuring lung function in conscious guinea pigs using a whole body plethysmograph. Because guinea pigs breathe through the nose, a technique was also developed to measure nasal and lower respiratory system conductance simultaneously in anesthetized animals. The upper and the lower airways could be challenged separately and studied in a manner similar to the conditions in the plethysmograph. Aerosols of histamine, carbachol, or ovalbumin delivered to the nose in sensitized animals had no effect on nasal conductance, even in doses 100 times higher than that required to reduce lower respiratory system conductance. However, intravenous histamine increased nasal conductance. Thus, although nasal resistance constitutes the majority of the total respiratory system resistance measured in the plethysmograph, nasal resistance is unaffected by the aerosol drugs studied. We therefore consider changes in resistance measured in the plethysmograph to originate at or below the larynx. The plethysmographic technique described here is a reliable, reproducible, and rapid technique that enables repeated measurement in animals and minimizes animal trauma.

2000 ◽  
Vol 89 (5) ◽  
pp. 1971-1978 ◽  
Author(s):  
O. E. Suman ◽  
J. D. Morrow ◽  
K. A. O'Malley ◽  
K. C. Beck

Airway function deteriorates significantly on cessation of exercise or isocapnic hyperventilation challenges but is largely preserved during the challenge in humans and guinea pigs. PGE2, an endogenous bronchodilator, might be responsible for the preservation of lung function during hyperventilation (HV). We hypothesized that PGE2 might have a protective effect during HV, partially explaining the minimal changes in respiratory system resistance (Rrs) usually seen during HV in humans and guinea pigs. Therefore, changes in Rrs were measured during and after HV in anesthetized, mechanically ventilated guinea pigs treated with flurbiprofen (FBN) or placebo. With HV, there was an initial bronchodilation that was unaffected by FBN. Rrs then increased with time during HV, an effect that was blocked by FBN. After HV, Rrs increased further in all groups, but the increase in Rrs was less in the FBN-treated groups. FBN treatment reduced the PGE2 concentration slightly in lung lavage fluid compared with placebo. We found no enhancement or refractoriness of the Rrs response to repeat bouts of HV and no effect of FBN treatment on the response of Rrs to repeat HV. These results suggest that a constrictor PG is released during and possibly after HV and that the post-HV increase in Rrs is the sum of effects of the PG released during HV and a second constrictor mechanism operating after HV. We found no evidence for bronchodilator PG during or after HV in the guinea pig.


1995 ◽  
Vol 14 (12) ◽  
pp. 949-954 ◽  
Author(s):  
Gpl Naylor ◽  
JD Harrison

The gastrointestinal absorption of Fe and Co by rats and guinea pigs of different ages was measured by comparing the whole-body retention of 59Fe and 57Co after oral and intraperitoneal administrations. The age-groups studied included newborn, weanlings and adults. The absorption of both Fe and Co decreased markedly with age in both rats and guinea pigs. In the rat, absorption remained ele vated during the suckling period, while in the guinea pig absorption decreased markedly during suckling. In both species, Fe and Co absorption were similar, and remained elevated above adult values for some time after weaning. The generally greater absorption of Fe and Co by rats than by guinea pigs and the longer duration of maximal absorp tion in the rats may have involved differences in Fe status in the two species and differences in the timing of gut mat uration.


1994 ◽  
Vol 76 (3) ◽  
pp. 1150-1155 ◽  
Author(s):  
T. M. Murphy ◽  
D. W. Ray ◽  
L. E. Alger ◽  
I. J. Phillips ◽  
J. C. Roach ◽  
...  

Adolescent guinea pigs (AGPs) demonstrate dry gas hyperpnea-induced bronchoconstriction (HIB) that shares key features with HIB in humans with asthma. The airways of immature animals exhibit enhanced reactivity to diverse types of stimulation. We tested whether dry gas HIB is also increased in newborn guinea pigs (NGPs). We quantified HIB as the fractional increase of respiratory system resistance (Rrs) over baseline (BL) in five 4- to 7-day-old NGPs after 10 min of hyperpnea, as well as changes in Rrs elicited by intravenous methacholine or capsaicin, and compared these responses with those of AGPs. During hyperpnea, analogous stimuli were delivered by mechanically imposing hyperpnea at 3.0, 4.5, and 6.0 times quiet eucapnic minute ventilation (VE). In AGPs, hyperpnea caused significant bronchoconstriction that increased with VE; peak fractional increase of Rrs was 7.6 +/- 2.0 times BL. In contrast, hyperpnea caused insignificant bronchoconstriction in NGPs (1.4 +/- 0.2 times BL after the largest VE; P < 0.05 vs. AGP). Responses elicited by methacholine (10(-10)-10(-7) mol/kg) or capsaicin (0.01–10.0 microgram/kg) were similar in NGPs and AGPs. In AGPs, hyperpnea suppressed HIB until posthyperpnea. To determine whether the reduced HIB of NGPs was caused by enhanced suppression, NGPs and AGPs were administered acetylcholine (10(-10)-10(-7) mol/kg i.v.) during BL eucapnic ventilation and during eucapnic hyperpnea with warm humidified gas. Responses to acetylcholine were suppressed in AGPs and NGPs to a similar degree. We conclude that HIB is markedly diminished shortly after birth in guinea pigs and that it increases substantially during maturation.(ABSTRACT TRUNCATED AT 250 WORDS)


1956 ◽  
Vol 188 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Arthur B. French ◽  
Patricia E. Wall

Cholinesterase activity and responses to pressure, acetylcholine, histamine and eserine were studied in isolated intestinal loops from 15 rhesus monkeys, 4 rats and 31 guinea pigs subjected to whole body x-irradiation, and in loops from paired control animals. Ileal and jejunal nonspecific cholinesterase levels were reduced in rats 48 hours after 650 r, and in guinea pigs 48 hours after 250 r, but not in rhesus monkeys 48 hours and 7–9 days after 800 r. Monkey plasma cholinesterase levels showed only a small preterminal decrease when measured daily after 800 r. The peristaltic responses of monkey and guinea pig intestinal loops to intraluminal pressure were normal at the above intervals after radiation. In monkeys, rats and guinea pigs the dose of acetylcholine required to elicit a contraction was unchanged by radiation regardless of whether threshold dose or the dose which produced 50% of the calculated maximal response was measured. The height of the maximum contractile response of monkey ileal and jejunal loops to acetylcholine was greater at both time intervals after radiation than in control loops. This difference was not found in rats or guinea pigs or in monkeys after histamine or eserine. These observations cast doubt on the idea that changes in intestinal cholinesterase activity or in the sensitivity of intestinal muscle to acetylcholine play a significant part in the vomiting and the changes in intestinal motor activity which follow x-irradiation.


2000 ◽  
Vol 84 (4) ◽  
pp. 495-504 ◽  
Author(s):  
Katrien Rummens ◽  
Erik Van Herck ◽  
Rita van Bree ◽  
Roger Bouillon ◽  
F. André Van Assche ◽  
...  

Guinea-pig fetuses at term are mineralized to a degree comparable with human fetuses, which makes the guinea-pig an attractive animal model to study maternal–fetal interactions with regard to Ca and phosphate (P) homeostasis. We studied non-pregnant and pregnant (day 57) vitamin D-replete guinea-pigs, fed either a normal guinea-pig chow with 9·6 g Ca/kg and 4·9 g P/kg or a study diet with 2 g Ca/kg and 1 g P/kg (low-Ca–P diet) for 7–8 weeks. Both pregnancy and the low-Ca–P diet decreased plasma concentrations of 25-hydroxycholecalciferol (25(OH)D3), but increased total and free 1α,25-dihydroxycholecalciferol (1,25(OH)2D3), strongly suggesting an additive stimulation of 1α-hydroxylase activity. Maternal and fetal 25(OH)D3and 1,25(OH)2D3levels were highly correlated (r0·82 and 0·92 respectively, P<0·001). Dual-energy absorption X-ray absorptiometry (DXA) showed that both pregnancy and the low-Ca–P diet decreased bone mineral density (BMD) of the maternal femur, particularly at the distal metaphysis. Despite higher 1,25(OH)2D3concentrations and lower BMD, pregnant animals on the low-Ca–P diet were hypocalcaemic; blood Ca2+levels were inversely correlated with the number of fetuses in this group (r-0·93, P<0·001). Fetal growth as well as mineralization (assessed by whole-body and femoral DXA, bone histomorphometry and plasma–bone osteocalcin measurements) were unaltered in the low-Ca–P group. In conclusion, fetal mineralization proceeds normally but induces maternal hypocalcaemia in guinea-pigs with dietary restriction of Ca and P.


2017 ◽  
Vol 313 (1) ◽  
pp. R19-R28 ◽  
Author(s):  
Dane M. Horton ◽  
David A. Saint ◽  
Julie A. Owens ◽  
Kathryn L. Gatford ◽  
Karen L. Kind

The guinea pig is an alternate small animal model for the study of metabolism, including insulin sensitivity. However, only one study to date has reported the use of the hyperinsulinemic euglycemic clamp in anesthetized animals in this species, and the dose response has not been reported. We therefore characterized the dose-response curve for whole body glucose uptake using recombinant human insulin in the adult guinea pig. Interspecies comparisons with published data showed species differences in maximal whole body responses (guinea pig ≈ human < rat < mouse) and the insulin concentrations at which half-maximal insulin responses occurred (guinea pig > human ≈ rat > mouse). In subsequent studies, we used concomitant d-[3-3H]glucose infusion to characterize insulin sensitivities of whole body glucose uptake, utilization, production, storage, and glycolysis in young adult guinea pigs at human insulin doses that produced approximately half-maximal (7.5 mU·min−1·kg−1) and near-maximal whole body responses (30 mU·min−1·kg−1). Although human insulin infusion increased rates of glucose utilization (up to 68%) and storage and, at high concentrations, increased rates of glycolysis in females, glucose production was only partially suppressed (~23%), even at high insulin doses. Fasting glucose, metabolic clearance of insulin, and rates of glucose utilization, storage, and production during insulin stimulation were higher in female than in male guinea pigs ( P < 0.05), but insulin sensitivity of these and whole body glucose uptake did not differ between sexes. This study establishes a method for measuring partitioned glucose metabolism in chronically catheterized conscious guinea pigs, allowing studies of regulation of insulin sensitivity in this species.


2001 ◽  
Vol 90 (6) ◽  
pp. 2221-2230 ◽  
Author(s):  
Ferenc Peták ◽  
Walid Habre ◽  
Yves R. Donati ◽  
Zoltán Hantos ◽  
Constance Barazzone-Argiroffo

Hyperoxia-induced lung damage was investigated via airway and respiratory tissue mechanics measurements with low-frequency forced oscillations (LFOT) and analysis of spontaneous breathing indexes by barometric whole body plethysmography (WBP). WBP was performed in the unrestrained awake mice kept in room air ( n = 12) or in 100% oxygen for 24 ( n = 9), 48 ( n = 8), or 60 ( n = 9) h, and the indexes, including enhanced pause (Penh) and peak inspiratory and expiratory flows, were determined. The mice were then anesthetized, paralyzed, and mechanically ventilated. Airway resistance, respiratory system resistance at breathing frequency, and tissue damping and elastance were identified from the LFOT impedance data by model fitting. The monotonous decrease in airway resistance during hyperoxia correlated best with the increasing peak expiratory flow. Respiratory system resistance and tissue damping and elastance were unchanged up to 48 h of exposure but were markedly elevated at 60 h, with associated decreases in peak inspiratory flow. Penh was increased at 24 h and sharply elevated at 60 h. These results indicate no adverse effect of hyperoxia on the airway mechanics in mice, whereas marked parenchymal damage develops by 60 h. The inconsistent relationships between LFOT parameters and WBP indexes suggest that the changes in the latter reflect alterations in the breathing pattern rather than in the mechanical properties. It is concluded that, in the presence of diffuse lung disease, Penh is inadequate for characterization of the mechanical status of the respiratory system.


1993 ◽  
Vol 75 (6) ◽  
pp. 2797-2804 ◽  
Author(s):  
A. Garland ◽  
J. E. Jordan ◽  
D. W. Ray ◽  
S. M. Spaethe ◽  
L. Alger ◽  
...  

Guinea pigs mechanically hyperventilated with dry gas exhibit hyperpnea-induced bronchoconstriction (HIB) and hyperpnea-induced bronchovascular hyperpermeability (HIBVH). Tachykinins released from airway C-fiber neurons are the central mediators of guinea pig HIB but play only a contributory role in HIBVH. Recent studies suggest that eicosanoid mediators can provoke bronchoconstriction and bronchovascular hyperpermeability, are released by dry gas hyperpnea, and can themselves elicit or modulate tachykinin release. We therefore hypothesized that eicosanoids may participate in HIB and/or HIBVH. To test these hypotheses, we analyzed respiratory system resistance changes and Evans blue-labeled albumin extravasation into the airways of 60 tracheostomized and mechanically ventilated guinea pigs. Animals were subjected to 10 min of isocapnic dry gas hyperpnea or to quiet breathing of humidified gas and received as pretreatment either piroxicam, a cyclooxygenase (CO) inhibitor; A-63162, a 5-lipoxygenase (5-LO) inhibitor; BW-755c, a combined CO and 5-LO inhibitor; ICI-198,615, a leukotriene D4 receptor antagonist; or no drug. HIB was substantially (50–80%) reduced by each of the four eicosanoid-modulating drugs. In contrast, HIBVH was reduced only by BW-755c, and this effect occurred only within the extrapulmonary airways (42% reduction). These data indicate that both CO and 5-LO products, including leukotriene D4, participate in the pathogenesis of HIB but that, like tachykinins, they play only a small contributory role in HIBVH. Together with our previous demonstration that sensory neuropeptide release is critical for the occurrence of HIB, we conclude that the roles of eicosanoids and tachykinins in guinea pig HIB are interdependent.


Author(s):  
Corazon D. Bucana

In the circulating blood of man and guinea pigs, glycogen occurs primarily in polymorphonuclear neutrophils and platelets. The amount of glycogen in neutrophils increases with time after the cells leave the bone marrow, and the distribution of glycogen in neutrophils changes from an apparently random distribution to large clumps when these cells move out of the circulation to the site of inflammation in the peritoneal cavity. The objective of this study was to further investigate changes in glycogen content and distribution in neutrophils. I chose an intradermal site because it allows study of neutrophils at various stages of extravasation.Initially, osmium ferrocyanide and osmium ferricyanide were used to fix glycogen in the neutrophils for ultrastructural studies. My findings confirmed previous reports that showed that glycogen is well preserved by both these fixatives and that osmium ferricyanide protects glycogen from solubilization by uranyl acetate.I found that osmium ferrocyanide similarly protected glycogen. My studies showed, however, that the electron density of mitochondria and other cytoplasmic organelles was lower in samples fixed with osmium ferrocyanide than in samples fixed with osmium ferricyanide.


Sign in / Sign up

Export Citation Format

Share Document