Line Segment Facility Location in Weighted Subdivisions

Author(s):  
Yam Ki Cheung ◽  
Ovidiu Daescu
Author(s):  
Minming Li ◽  
Chenhao Wang ◽  
Mengqi Zhang

This paper studies the facility location games with payments, where facilities are strategic players. In the game, customers and facilities are located at publicly known locations on a line segment. Each selfish facility has an opening-cost as her private information, and she may strategically report it. Upon receiving the reports, the government uses a mechanism to select some facilities to open and pay to them. The cost/utility of each customer depends on the distance to the nearest opened facility. Under a given budget B, which constrains the total payment, we derive upper and lower bounds on the approximation ratios of truthful budget feasible mechanisms for four utilitarian and egalitarian objectives, and study the case when augmented budget is allowed.


2013 ◽  
Author(s):  
Artchapong Hassametto ◽  
Preerawadee Chaiboontun ◽  
Chattraporn Prajuabwan ◽  
Laphatrada Khammuang ◽  
Aussadavut Dumrongsiri

2017 ◽  
Vol 5 (11) ◽  
pp. 83-89
Author(s):  
Vairaprakash Gurusamy ◽  
◽  
◽  
K. Nandhini

2020 ◽  
Author(s):  
Anna Nowakowska ◽  
Alasdair D F Clarke ◽  
Jessica Christie ◽  
Josephine Reuther ◽  
Amelia R. Hunt

We measured the efficiency of 30 participants as they searched through simple line segment stimuli and through a set of complex icons. We observed a dramatic shift from highly variable, and mostly inefficient, strategies with the line segments, to uniformly efficient search behaviour with the icons. These results demonstrate that changing what may initially appear to be irrelevant, surface-level details of the task can lead to large changes in measured behaviour, and that visual primitives are not always representative of more complex objects.


2020 ◽  
Author(s):  
Vishwakant Malladi ◽  
Kumar Muthuraman
Keyword(s):  

Author(s):  
Jia-Bao Liu ◽  
Muhammad Faisal Nadeem ◽  
Mohammad Azeem

Aims and Objective: The idea of partition and resolving sets plays an important role in various areas of engineering, chemistry and computer science such as robot navigation, facility location, pharmaceutical chemistry, combinatorial optimization, networking, and mastermind game. Method: In a graph to obtain the exact location of a required vertex which is unique from all the vertices, several vertices are selected this is called resolving set and its generalization is called resolving partition, where selected vertices are in the form of subsets. Minimum number of partitions of the vertices into sets is called partition dimension. Results: It was proved that determining the partition dimension a graph is nondeterministic polynomial time (NP) problem. In this article, we find the partition dimension of convex polytopes and provide their bounds. Conclusion: The major contribution of this article is that, due to the complexity of computing the exact partition dimension we provides the bounds and show that all the graphs discussed in results have partition dimension either less or equals to 4, but it cannot been be greater than 4.


Sign in / Sign up

Export Citation Format

Share Document