Content Sharing Based on Personal Information in Virtually Secured Space

Author(s):  
Hosik Sohn ◽  
Yong Man Ro ◽  
Kostantinos N. Plataniotis
2022 ◽  
Vol 22 (1) ◽  
pp. 1-32
Author(s):  
Onuralp Ulusoy ◽  
Pinar Yolum

Privacy is the right of individuals to keep personal information to themselves. When individuals use online systems, they should be given the right to decide what information they would like to share and what to keep private. When a piece of information pertains only to a single individual, preserving privacy is possible by providing the right access options to the user. However, when a piece of information pertains to multiple individuals, such as a picture of a group of friends or a collaboratively edited document, deciding how to share this information and with whom is challenging. The problem becomes more difficult when the individuals who are affected by the information have different, possibly conflicting privacy constraints. Resolving this problem requires a mechanism that takes into account the relevant individuals’ concerns to decide on the privacy configuration of information. Because these decisions need to be made frequently (i.e., per each piece of shared content), the mechanism should be automated. This article presents a personal assistant to help end-users with managing the privacy of their content. When some content that belongs to multiple users is about to be shared, the personal assistants of the users employ an auction-based privacy mechanism to regulate the privacy of the content. To do so, each personal assistant learns the preferences of its user over time and produces bids accordingly. Our proposed personal assistant is capable of assisting users with different personas and thus ensures that people benefit from it as they need it. Our evaluations over multiagent simulations with online social network content show that our proposed personal assistant enables privacy-respecting content sharing.


2017 ◽  
Vol 2 (3) ◽  
Author(s):  
S. Saranya ◽  
M. Ranjith Kumar ◽  
K. Madheswaran

User Image sharing social site maintaining privacy has become a major problem, as demonstrated by a recent wave of publicized incidents where users inadvertently shared personal information. In light of these incidents, the need of tools to help users control access to their shared content is apparent. Toward addressing this need an Adaptive Privacy Policy Prediction (A3P) system to help users compose privacy settings for their images. The solution relies on an image classification framework for image categories which may be associated with similar policies and on a policy prediction algorithm to automatically generate a policy for each newly uploaded image, also according to user’s social features. Image Sharing takes place both among previously established groups of known people or social circles and also increasingly with people outside the users social circles, for purposes of social discovery-to help them identify new peers and learn about peers interests and social surroundings, Sharing images within online content sharing sites, therefore, may quickly lead to unwanted disclosure. The aggregated information can result in unexpected exposure of one’s social environment and lead to abuse of one’s personal information.


2020 ◽  
Vol 43 ◽  
Author(s):  
John Corbit ◽  
Chris Moore

Abstract The integration of first-, second-, and third-personal information within joint intentional collaboration provides the foundation for broad-based second-personal morality. We offer two additions to this framework: a description of the developmental process through which second-personal competence emerges from early triadic interactions, and empirical evidence that collaboration with a concrete goal may provide an essential focal point for this integrative process.


2002 ◽  
Vol 30 (3) ◽  
pp. 466-474

In In re Pharmatrak, Inc. Privacy Litigation, website users brought suit claiming that major pharmaceutical corporations and a web monitoring company violated three federal statutes protecting electronic communications and data by collecting web traffic data and personal information about website users. On August 13,2002, the District Court of Massachusetts dismissed these allegations, holding that the defendants were parties to the communications and thus exempted under the statutory language.The court also found that plaintiffs had not suffered an amount of damages required to sustain private action.


Author(s):  
Fulpagare Priya K. ◽  
Nitin N. Patil

Social Network is an emerging e-service for Content Sharing Sites (CSS). It is an emerging service which provides reliable communication. Some users over CSS affect user’s privacy on their personal contents, where some users keep on sending annoying comments and messages by taking advantage of the user’s inherent trust in their relationship network. Integration of multiple user’s privacy preferences is very difficult task, because privacy preferences may create conflict. The techniques to resolve conflicts are essentially required. Moreover, these methods need to consider how users would actually reach an agreement about a solution to the conflict in order to offer solutions acceptable by all of the concerned users. The first mechanism to resolve conflicts for multi-party privacy management in social media that is able to adapt to different situations by displaying the enterprises that users make to reach a result to the conflicts. Billions of items that are uploaded to social media are co-owned by multiple users. Only the user that uploads the item is allowed to set its privacy settings (i.e. who can access the item). This is a critical problem as users’ privacy preferences for co-owned items can conflict. Multi-party privacy management is therefore of crucial importance for users to appropriately reserve their privacy in social media.


Sign in / Sign up

Export Citation Format

Share Document