Redundantly Actuated PRPRP Radial Mechanism in Segment Erector of Shield Machine for Synchronization Control

Author(s):  
Wanghui Bu ◽  
Zhenyu Liu ◽  
Jianrong Tan
Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 152
Author(s):  
Litong Lyu ◽  
Xiao Liang ◽  
Jingbo Guo

Segment assembling is one of the principle processes during tunnel construction using shield tunneling machines. The segment erector is a robotic manipulator powered by a hydraulic system to assemble prefabricated concrete segments onto the excavated tunnel surface. Nowadays, automation of the segment erector has become one of the definite developing trends to further improve the efficiency and safety during construction; thus, closed-loop motion control is an essential technology. Within the segment erector, the lifting gantry is driven by dual cylinders to lift heavy segments in the radial direction. Different from the dual-cylinder mechanism used in other machines such as forklifts, the lifting gantry usually works at an inclined angle, leading to unbalanced loads on the two sides. Although strong guide rails are applied to ensure synchronization, the gantry still occasionally suffers from chattering, “pull-and-drag”, or even being stuck in practice. Therefore, precise motion tracking control as well as high-level synchronization of the dual cylinders have become essential for the lifting gantry. In this study, a complete dynamics model of the dual-cylinder lifting gantry is constructed, considering the linear motion as well as the additional rotational motion of the crossbeam, which reveals the essence of poor synchronization. Then, a two-level synchronization control scheme is synthesized. The thrust allocation is designed to coordinate the dual cylinders and keep the rotational angle of the crossbeam within a small range. The motion tracking controller is designed based on the adaptive robust control theory to guarantee the linear motion tracking precision. The theoretical performance is analyzed with corresponding proof. Finally, comparative simulations are conducted and the results show that the proposed scheme achieves high-precision motion tracking performance and simultaneous high-level synchronization of dual cylinders under unbalanced loads.


2009 ◽  
Vol 17 (2) ◽  
pp. 416-423 ◽  
Author(s):  
Weiwei Shang ◽  
Shuang Cong ◽  
Yaoxin Zhang ◽  
Yanyang Liang

2005 ◽  
Vol 71 (711) ◽  
pp. 3146-3151
Author(s):  
Yoshikuni ISHIKAWA ◽  
Tielong SHEN ◽  
Xiaofeng YANG ◽  
Katsutoshi TAMURA

Author(s):  
Zhu Wen ◽  
Xuening Rong ◽  
Zhen Wang ◽  
Songtong Han ◽  
Ziming Xiong ◽  
...  

Author(s):  
Xuanyu Liu ◽  
Wentao Wang ◽  
Yudong Wang ◽  
Cheng Shao ◽  
Qiumei Cong

During shield machine tunneling, the earth pressure in the sealed cabin must be kept balanced to ensure construction safety. As there is a strong nonlinear coupling relationship among the tunneling parameters, it is difficult to control the balance between the amount of soil entered and the amount discharged in the sealed cabin. So, the control effect of excavation face stability is poor. For this purpose, a coordinated optimization control method of shield machine based on dynamic fuzzy neural network (D-FNN) direct inverse control is proposed. The cutter head torque, advance speed, thrust, screw conveyor speed and earth pressure difference in the sealed cabin are selected as inputs, and the D-FNN control model of the control parameters is established, whose output are screw conveyor speed and advance speed at the next moment. The error reduction rate method is introduced to trim and identify the network structure to optimize the control model. On this basis, an optimal control system for earth pressure balance (EPB) of shield machine is established based on the direct inverse control method. The simulation results show that the method can optimize the control parameters coordinately according to the changes of the construction environment, effectively reduce the earth pressure fluctuations during shield tunneling, and can better control the stability of the excavation surface.


Sign in / Sign up

Export Citation Format

Share Document