Applications of branching processes to the final size of SIR epidemics

Author(s):  
Frank Ball ◽  
Peter Neal
2013 ◽  
Vol 50 (04) ◽  
pp. 1147-1168 ◽  
Author(s):  
Frank Ball ◽  
David Sirl

We consider a stochastic SIR (susceptible → infective → removed) epidemic on a random graph with specified degree distribution, constructed using the configuration model, and investigate the ‘acquaintance vaccination’ method for targeting individuals of high degree for vaccination. Branching process approximations are developed which yield a post-vaccination threshold parameter, and the asymptotic (large population) probability and final size of a major outbreak. We find that introducing an imperfect vaccine response into the present model for acquaintance vaccination leads to sibling dependence in the approximating branching processes, which may then require infinite type spaces for their analysis and are generally not amenable to numerical calculation. Thus, we propose and analyse an alternative model for acquaintance vaccination, which avoids these difficulties. The theory is illustrated by a brief numerical study, which suggests that the two models for acquaintance vaccination yield quantitatively very similar disease properties.


2013 ◽  
Vol 50 (4) ◽  
pp. 1147-1168 ◽  
Author(s):  
Frank Ball ◽  
David Sirl

We consider a stochastic SIR (susceptible → infective → removed) epidemic on a random graph with specified degree distribution, constructed using the configuration model, and investigate the ‘acquaintance vaccination’ method for targeting individuals of high degree for vaccination. Branching process approximations are developed which yield a post-vaccination threshold parameter, and the asymptotic (large population) probability and final size of a major outbreak. We find that introducing an imperfect vaccine response into the present model for acquaintance vaccination leads to sibling dependence in the approximating branching processes, which may then require infinite type spaces for their analysis and are generally not amenable to numerical calculation. Thus, we propose and analyse an alternative model for acquaintance vaccination, which avoids these difficulties. The theory is illustrated by a brief numerical study, which suggests that the two models for acquaintance vaccination yield quantitatively very similar disease properties.


2007 ◽  
Vol 44 (02) ◽  
pp. 492-505
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.


Author(s):  
C. N. Sun

Myoepithelial cells have been observed in the prostate, harderian, apocrine, exocrine sweat and mammary glands. Such cells and their numerous branching processes form basket-like structures around the glandular acini. Their shapes are quite different from structures seen either in spindleshaped smooth muscle cells or skeletal muscle cells. These myoepithelial cells lie on the epithelial side of the basement membrane in the glands. This presentation describes the ultrastructure of such myoepithelial cells which have been found also in the parotid gland carcinoma from a 45-year old patient.Specimens were cut into small pieces about 1 mm3 and immediately fixed in 4 percent glutaraldehyde in phosphate buffer for two hours, then post-fixed in 1 percent buffered osmium tetroxide for 1 hour. After dehydration, tissues were embedded in Epon 812. Thin sections were stained with uranyl acetate and lead citrate. Ultrastructurally, the pattern of each individual cell showed wide variations.


Author(s):  
A. W. West

The influence of the filament microstructure on the critical current density values, Jc, of Nb-Ti multifilamentary superconducting composites has been well documented. However the development of these microstructures during composite processing is still under investigation.During manufacture, the multifilamentary composite is given several heat treatments interspersed in the wire-drawing schedule. Typically, these heat treatments are for 5 to 80 hours at temperatures between 523 and 573K. A short heat treatment of approximately 3 hours at 573K is usually given to the wire at final size. Originally this heat treatment was given to soften the copper matrix, but recent work has shown that it can markedly change both the Jc value and microstructure of the composite.


1986 ◽  
Author(s):  
Stephen D. Durham ◽  
Kai F. Yu
Keyword(s):  

2016 ◽  
Vol 72 (9) ◽  
Author(s):  
Seyed Ali Sebt ◽  
Zahra Bamshad ◽  
Mohammad Reza Abolhassani
Keyword(s):  

1969 ◽  
Vol 6 (03) ◽  
pp. 478-492 ◽  
Author(s):  
William E. Wilkinson

Consider a discrete time Markov chain {Zn } whose state space is the non-negative integers and whose transition probability matrix ║Pij ║ possesses the representation where {Pr }, r = 1,2,…, is a finite or denumerably infinite sequence of non-negative real numbers satisfying , and , is a corresponding sequence of probability generating functions. It is assumed that Z 0 = k, a finite positive integer.


Sign in / Sign up

Export Citation Format

Share Document