Material Uniformity and the Concept of the Stress Space

Author(s):  
Serge Preston ◽  
Marek Elżanowski
2016 ◽  
Vol 93 (4) ◽  
Author(s):  
Sumantra Sarkar ◽  
Dapeng Bi ◽  
Jie Zhang ◽  
Jie Ren ◽  
R. P. Behringer ◽  
...  
Keyword(s):  

Author(s):  
Xanthippi Markenscoff ◽  
Anurag Gupta

Conservation laws have been recently obtained by requiring that a positive definite functional of the stress gradient (the Euler–Lagrange equations of which are the Beltrami–Michell compatibility conditions) be invariant under certain transformations. Here these laws are extended to include body forces, thermal stresses and Kröner's incompatibility tensor as source terms in the configurational balance laws, which allows for the incompatibility in the volume to be measured from surface data. An example is presented.


1954 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
LIU SHU-I
Keyword(s):  

2011 ◽  
Vol 2011 (1) ◽  
pp. 000008-000016 ◽  
Author(s):  
Antonio La Manna ◽  
K. J. Rebibis ◽  
C. Gerets ◽  
E. Beyne

A key element for improving 3D stacking reliability is the choice of the right Underfill materials. The Underfill is a specialized adhesive that has the main purposes of locking top and bottom dies; it must fill the gap between bumps and between dies, while reducing the differential movement that would occur during thermal cycling. Traditional underfill processes are based on local dispensing after solder bump reflow (Capillary dispensing), or before flip chip operation with no need of reflow (No Flow Underfill, NUF). In case of 3D stacking, such processes present some limitations: need of a dispensing area (die size increase); material flowing (spacing between dies) and cost (low throughput). After an introduction on typical underfill applications like die-to-package and die-die assembly, we report the work done to assess the properties of several Wafer Applied Underfill (WAUF) materials and their integration in 3D stacking. These materials have been initially applied on silicon wafers in order to assess the minimum achievable thickness and the material uniformity. The wafers have been coated by using different methods: spin coating and film lamination. After this initial assessment, the most promising materials have been used for 3D stacking. The test vehicle used has Cu/Sn μbumps with a pitch of 40μm. The quality of the materials is judged by electrical test, SAM (Surface Acoustic Microscope) and X-SEM (Scanning Electron Microscope).


2019 ◽  
Vol 92 ◽  
pp. 05006
Author(s):  
Truong Le ◽  
David Airey ◽  
Jamie Standing

The evolution of the creep strain component in triaxial stress space was investigated through performing a series of multistage drained compression tests on London Clay using a specially designed locally instrumented triaxial apparatus. Experiments along specifically defined stress paths showed significant rotation of the local creep strain component as the samples were sheared towards failure. The results indicate a need for a more complex plastic potential function to correctly predict incremental creep strains at different states in triaxial stress space. Creep deformations for stress path controlled drained compression tests were also found to require a reinterpretation of the classic secondary compression behaviour. Creep strain-rates were found to fall well outside the normal power decay function. Test data and previously reported drained creep test results on London Clay have been combined to provide a complete understanding of the incremental creep component. The experiments show how creep behaviour significantly depends on the stress conditions imposed and the approaching strain rate.


Sign in / Sign up

Export Citation Format

Share Document