scholarly journals Real-Time Biologically-Inspired Image Exposure Correction

Author(s):  
Vassilios Vonikakis ◽  
Chryssanthi Iakovidou ◽  
Ioannis Andreadis
2008 ◽  
Vol 58 ◽  
pp. 143-152
Author(s):  
Paolo Arena ◽  
Davide Lombardo ◽  
Luca Patanè

In this contribution a survey on a novel approach to locomotion and perception in biologically inspired robots is presented. The basic electronic architecture for modeling and implementing nonlinear dynamics involved in motion and perceptual control of the robot is the Cellular nonlinear network paradigm. It is shown how this continuous time lattice of neural-like circuits can generate suitable and real-time dynamics for efficient control of multi-actuators moving machines, and also to create the basis for a perceptual control of their behaviors.


2021 ◽  
Author(s):  
Matthew S. Willsey ◽  
Samuel R. Nason ◽  
Scott R. Ensel ◽  
Hisham Temmar ◽  
Matthew J. Mender ◽  
...  

AbstractDespite the rapid progress and interest in brain-machine interfaces that restore motor function, the performance of prosthetic fingers and limbs has yet to mimic native function. The algorithm that converts brain signals to a control signal for the prosthetic device is one of the limitations in achieving rapid and realistic finger movements. To achieve more realistic finger movements, we developed a shallow feed-forward neural network, loosely inspired by the biological neural pathway, to decode real-time two-degree-of-freedom finger movements. Using a two-step training method, a recalibrated feedback intention–trained (ReFIT) neural network achieved a higher throughput with higher finger velocities and more natural appearing finger movements than the ReFIT Kalman filter, which represents the current standard. The neural network decoders introduced herein are the first to demonstrate real-time decoding of continuous movements at a level superior to the current state-of-the-art and could provide a starting point to using neural networks for the development of more naturalistic brain-controlled prostheses.


Author(s):  
Sushruta Mishra ◽  
Brojo Kishore Mishra ◽  
Hrudaya Kumar Tripathy

The techniques inspired from the nature based evolution and aggregated nature of social colonies have been promising and shown excellence in handling complicated optimization problems thereby gaining huge popularity recently. These methodologies can be used as an effective problem solving tool thereby acting as an optimizing agent. Such techniques are called Bio inspired computing. Our study surveys the recent advances in biologically inspired swarm optimization methods and Evolutionary methods, which may be applied in various fields. Four real time scenarios are demonstrated in the form of case studies to show the significance of bio inspired algorithms. The techniques that are illustrated here include Differential Evolution, Genetic Search, Particle Swarm optimization and artificial bee Colony optimization. The results inferred by implanting these techniques are highly encouraging.


Author(s):  
Apurva Shah

Biologically inspired data mining techniques have been intensively used in different data mining applications. Ant Colony Optimization (ACO) has been applied for scheduling real-time distributed systems in the recent time. Real-time processing requires both parallel activities and fast response. It is required to complete the work and deliver services on a timely basis. In the presence of timing, a real-time system's performance does not always improve as processor and speed increases. ACO performs quite well for scheduling real-time distributed systems during overloaded conditions. Earliest Deadline First (EDF) is the optimal scheduling algorithm for single processor real-time systems during under-loaded conditions. This chapter proposes an adaptive algorithm that takes advantage of EDF- and ACO-based algorithms and overcomes their limitations.


Sign in / Sign up

Export Citation Format

Share Document