Grouping-Shuffling Particle Swarm Optimization: An Improved PSO for Continuous Optimization

Author(s):  
Yinghai Li ◽  
Xiaohua Dong ◽  
Ji Liu
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mehmet Hacibeyoglu ◽  
Mohammed H. Ibrahim

Multilayer feed-forward artificial neural networks are one of the most frequently used data mining methods for classification, recognition, and prediction problems. The classification accuracy of a multilayer feed-forward artificial neural networks is proportional to training. A well-trained multilayer feed-forward artificial neural networks can predict the class value of an unseen sample correctly if provided with the optimum weights. Determining the optimum weights is a nonlinear continuous optimization problem that can be solved with metaheuristic algorithms. In this paper, we propose a novel multimean particle swarm optimization algorithm for multilayer feed-forward artificial neural networks training. The proposed multimean particle swarm optimization algorithm searches the solution space more efficiently with multiple swarms and finds better solutions than particle swarm optimization. To evaluate the performance of the proposed multimean particle swarm optimization algorithm, experiments are conducted on ten benchmark datasets from the UCI repository and the obtained results are compared to the results of particle swarm optimization and other previous research in the literature. The analysis of the results demonstrated that the proposed multimean particle swarm optimization algorithm performed well and it can be adopted as a novel algorithm for multilayer feed-forward artificial neural networks training.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5679
Author(s):  
Mohamed A. M. Shaheen ◽  
Dalia Yousri ◽  
Ahmed Fathy ◽  
Hany M. Hasanien ◽  
Abdulaziz Alkuhayli ◽  
...  

The appropriate planning of electric power systems has a significant effect on the economic situation of countries. For the protection and reliability of the power system, the optimal reactive power dispatch (ORPD) problem is an essential issue. The ORPD is a non-linear, non-convex, and continuous or non-continuous optimization problem. Therefore, introducing a reliable optimizer is a challenging task to solve this optimization problem. This study proposes a robust and flexible optimization algorithm with the minimum adjustable parameters named Improved Marine Predators Algorithm and Particle Swarm Optimization (IMPAPSO) algorithm, for dealing with the non-linearity of ORPD. The IMPAPSO is evaluated using various test cases, including IEEE 30 bus, IEEE 57 bus, and IEEE 118 bus systems. An effectiveness of the proposed optimization algorithm was verified through a rigorous comparative study with other optimization methods. There was a noticeable enhancement in the electric power networks behavior when using the IMPAPSO method. Moreover, the IMPAPSO high convergence speed was an observed feature in a comparison with its peers.


2010 ◽  
Vol 20-23 ◽  
pp. 1280-1285
Author(s):  
Jian Xiang Wei ◽  
Yue Hong Sun

The particle swarm optimization (PSO) algorithm is a new population search strategy, which has exhibited good performance through well-known numerical test problems. However, it is easy to trap into local optimum because the population diversity becomes worse during the evolution. In order to overcome the shortcoming of the PSO, this paper proposes an improved PSO based on the symmetry distribution of the particle space position. From the research of particle movement in high dimensional space, we can see: the more symmetric of the particle distribution, the bigger probability can the algorithm be during converging to the global optimization solution. A novel population diversity function is put forward and an adjustment algorithm is put into the basic PSO. The steps of the proposed algorithm are given in detail. With two typical benchmark functions, the experimental results show the improved PSO has better convergence precision than the basic PSO.


2013 ◽  
Vol 394 ◽  
pp. 505-508 ◽  
Author(s):  
Guan Yu Zhang ◽  
Xiao Ming Wang ◽  
Rui Guo ◽  
Guo Qiang Wang

This paper presents an improved particle swarm optimization (PSO) algorithm based on genetic algorithm (GA) and Tabu algorithm. The improved PSO algorithm adds the characteristics of genetic, mutation, and tabu search into the standard PSO to help it overcome the weaknesses of falling into the local optimum and avoids the repeat of the optimum path. By contrasting the improved and standard PSO algorithms through testing classic functions, the improved PSO is found to have better global search characteristics.


2011 ◽  
Vol 179-180 ◽  
pp. 233-238 ◽  
Author(s):  
Hua Chen ◽  
Yi Ren Fan ◽  
Shao Gui Deng

In view of the defect of particle swarm optimization which easily gets into partial extremum, the paper put out an improved particle swarm optimization, and applies the algorithm to the selecting of parameter of RBF neural network basal function. It searches the best parameter vector in the whole space, according to coding means, iterative formula, adapted function which the paper puts forwards. The experiment proves that RBF neural network based on improved PSO has faster convergent speed, and higher error precision.


Author(s):  
Giang Thi - Huong Dang ◽  
Quang - Huy Vuong ◽  
Minh Hoang Ha ◽  
Minh - Trien Pham

Path planning for Unmanned Aerial Vehicle (UAV) targets at generating an optimal global path to the target, avoiding collisions and optimizing the given cost function under constraints. In this paper, the path planning problem for UAV in pre-known 3D environment is presented. Particle Swarm Optimization (PSO) was proved the efficiency for various problems. PSO has high convergence speed yet with its major drawback of premature convergence when solving large-scale optimization problems. In this paper, the improved PSO with adaptive mutation to overcome its drawback in order to applied PSO the UAV path planning in real 3D environment which composed of mountains and constraints. The effectiveness of the proposed PSO algorithm is compared to Genetic Algorithm, standard PSO and other improved PSO using 3D map of Daklak, Dakrong and Langco Beach. The results have shown the potential for applying proposed algorithm in optimizing the 3D UAV path planning. Keywords: UAV, Path planning, PSO, Optimization.


Author(s):  
Chunli Zhu ◽  
Yuan Shen ◽  
Xiujun Lei

Traditional template matching-based motion estimation is a popular but time-consuming method for vibration vision measurement. In this study, the particle swarm optimization (PSO) algorithm is improved to solve this time-consumption problem. The convergence speed of the algorithm is increased using the adjacent frames search method in the particle swarm initialization process. A flag array is created to avoid repeated calculation in the termination strategy. The subpixel positioning accuracy is ensured by applying the surface fitting method. The robustness of the algorithm is ensured by applying the zero-mean normalized cross correlation. Simulation results demonstrate that the average extraction error of the improved PSO algorithm is less than 1%. Compared with the commonly used three-step search algorithm, diamond search algorithm, and local search algorithm, the improved PSO algorithm consumes the least number of search points. Moreover, tests on real-world image sequences show good estimation accuracy at very low computational cost. The improved PSO algorithm proposed in this study is fast, accurate, and robust, and is suitable for plane motion estimation in vision measurement.


2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Martins Akugbe Arasomwan ◽  
Aderemi Oluyinka Adewumi

A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the solution search space is collectively constructed by a number of randomly selected particles in the swarm. The number of times the selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons were made with four different PSO variants, two of the variants implement different local search technique while the other two do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence velocity and precision, stability, robustness, and global-local search ability than the competing variants.


Sign in / Sign up

Export Citation Format

Share Document