Multiagent Means of Bandwidth Allocation for Telecommunication Market

Author(s):  
Adam Połomski
Author(s):  
A. Rethina Palin ◽  
I. Jeena Jacob

Wireless Mesh Network (MWN) could be divided into proactive routing, reactive routing and hybrid routing, which must satisfy the requirements related to scalability, reliability, flexibility, throughput, load balancing, congestion control and efficiency. DMN (Directional Mesh Network) become more adaptive to the local environments and robust to spectrum changes. The existing computing units in the mesh network systems are Fog nodes, the DMN architecture is more economic and efficient since it doesn’t require architecture- level changes from existing systems. The cluster head (CH) manages a group of nodes such that the network has the hierarchical structure for the channel access, routing and bandwidth allocation. The feature extraction and situational awareness is conducted, each Fog node sends the information regarding the current situation to the cluster head in the contextual format. A Markov logic network (MLN) based reasoning engine is utilized for the final routing table updating regarding the system uncertainty and complexity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Morichetti ◽  
Maziyar Milanizadeh ◽  
Matteo Petrini ◽  
Francesco Zanetto ◽  
Giorgio Ferrari ◽  
...  

AbstractFlexible optical networks require reconfigurable devices with operation on a wavelength range of several tens of nanometers, hitless tuneability (i.e. transparency to other channels during reconfiguration), and polarization independence. All these requirements have not been achieved yet in a single photonic integrated device and this is the reason why the potential of integrated photonics is still largely unexploited in the nodes of optical communication networks. Here we report on a fully-reconfigurable add-drop silicon photonic filter, which can be tuned well beyond the extended C-band (almost 100 nm) in a complete hitless (>35 dB channel isolation) and polarization transparent (1.2 dB polarization dependent loss) way. This achievement is the result of blended strategies applied to the design, calibration, tuning and control of the device. Transmission quality assessment on dual polarization 100 Gbit/s (QPSK) and 200 Gbit/s (16-QAM) signals demonstrates the suitability for dynamic bandwidth allocation in core networks, backhaul networks, intra- and inter-datacenter interconnects.


Sign in / Sign up

Export Citation Format

Share Document