The Security Model of Unidirectional Proxy Re-Signature with Private Re-Signature Key

Author(s):  
Jun Shao ◽  
Min Feng ◽  
Bin Zhu ◽  
Zhenfu Cao ◽  
Peng Liu
Keyword(s):  
Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


2020 ◽  
Vol 46 (7) ◽  
pp. 443-453
Author(s):  
P. N. Devyanin ◽  
A. V. Khoroshilov ◽  
V. V. Kuliamin ◽  
A. K. Petrenko ◽  
I. V. Shchepetkov

2021 ◽  
Author(s):  
Thilo Krachenfels ◽  
Fatemeh Ganji ◽  
Amir Moradi ◽  
Shahin Tajik ◽  
Jean-Pierre Seifert
Keyword(s):  

2020 ◽  
Vol 62 (5-6) ◽  
pp. 287-293
Author(s):  
Felix Günther

AbstractSecure connections are at the heart of today’s Internet infrastructure, protecting the confidentiality, authenticity, and integrity of communication. Achieving these security goals is the responsibility of cryptographic schemes, more specifically two main building blocks of secure connections. First, a key exchange protocol is run to establish a shared secret key between two parties over a, potentially, insecure connection. Then, a secure channel protocol uses that shared key to securely transport the actual data to be exchanged. While security notions for classical designs of these components are well-established, recently developed and standardized major Internet security protocols like Google’s QUIC protocol and the Transport Layer Security (TLS) protocol version 1.3 introduce novel features for which supporting security theory is lacking.In my dissertation [20], which this article summarizes, I studied these novel and advanced design aspects, introducing enhanced security models and analyzing the security of deployed protocols. For key exchange protocols, my thesis introduces a new model for multi-stage key exchange to capture that recent designs for secure connections establish several cryptographic keys for various purposes and with differing levels of security. It further introduces a formalism for key confirmation, reflecting a long-established practical design criteria which however was lacking a comprehensive formal treatment so far. For secure channels, my thesis captures the cryptographic subtleties of streaming data transmission through a revised security model and approaches novel concepts to frequently update key material for enhanced security through a multi-key channel notion. These models are then applied to study (and confirm) the security of the QUIC and TLS 1.3 protocol designs.


Cryptography ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 14
Author(s):  
Xavier Boyen ◽  
Udyani Herath ◽  
Matthew McKague ◽  
Douglas Stebila

The conventional public key infrastructure (PKI) model, which powers most of the Internet, suffers from an excess of trust into certificate authorities (CAs), compounded by a lack of transparency which makes it vulnerable to hard-to-detect targeted stealth impersonation attacks. Existing approaches to make certificate issuance more transparent, including ones based on blockchains, are still somewhat centralized. We present decentralized PKI transparency (DPKIT): a decentralized client-based approach to enforcing transparency in certificate issuance and revocation while eliminating single points of failure. DPKIT efficiently leverages an existing blockchain to realize an append-only, distributed associative array, which allows anyone (or their browser) to audit and update the history of all publicly issued certificates and revocations for any domain. Our technical contributions include definitions for append-only associative ledgers, a security model for certificate transparency, and a formal analysis of our DPKIT construction with respect to the same. Intended as a client-side browser extension, DPKIT will be effective at fraud detection and prosecution, even under fledgling user adoption, and with better coverage and privacy than federated observatories, such as Google’s or the Electronic Frontier Foundation’s.


Sign in / Sign up

Export Citation Format

Share Document