scholarly journals Inclusion Problems for Patterns with a Bounded Number of Variables

Author(s):  
Joachim Bremer ◽  
Dominik D. Freydenberger
2012 ◽  
Vol 220-221 ◽  
pp. 15-43 ◽  
Author(s):  
Joachim Bremer ◽  
Dominik D. Freydenberger

2020 ◽  
Vol 10 (1) ◽  
pp. 450-476
Author(s):  
Radu Ioan Boţ ◽  
Sorin-Mihai Grad ◽  
Dennis Meier ◽  
Mathias Staudigl

Abstract In this work we investigate dynamical systems designed to approach the solution sets of inclusion problems involving the sum of two maximally monotone operators. Our aim is to design methods which guarantee strong convergence of trajectories towards the minimum norm solution of the underlying monotone inclusion problem. To that end, we investigate in detail the asymptotic behavior of dynamical systems perturbed by a Tikhonov regularization where either the maximally monotone operators themselves, or the vector field of the dynamical system is regularized. In both cases we prove strong convergence of the trajectories towards minimum norm solutions to an underlying monotone inclusion problem, and we illustrate numerically qualitative differences between these two complementary regularization strategies. The so-constructed dynamical systems are either of Krasnoselskiĭ-Mann, of forward-backward type or of forward-backward-forward type, and with the help of injected regularization we demonstrate seminal results on the strong convergence of Hilbert space valued evolutions designed to solve monotone inclusion and equilibrium problems.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1161
Author(s):  
Jinhua Zhu ◽  
Jinfang Tang ◽  
Shih-sen Chang ◽  
Min Liu ◽  
Liangcai Zhao

In this paper, we introduce an iterative algorithm for finding a common solution of a finite family of the equilibrium problems, quasi-variational inclusion problems and fixed point problem on Hadamard manifolds. Under suitable conditions, some strong convergence theorems are proved. Our results extend some recent results in literature.


Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


1982 ◽  
Vol 5 (2) ◽  
pp. 143-170
Author(s):  
Jan A. Bergstra ◽  
John-Jules Ch. Meyer

In [5] it has been proved that by using hidden functions the number of equations needed to specify a finite data type is bounded by numbers depending only on the signature of that data type. In the special case of a finite minimal unoid, however, it seems to be relevant to ask whether or not a specification can also be made by a bounded number of equations using only unary hidden functions. In this paper we prove that this can be done.


Sign in / Sign up

Export Citation Format

Share Document