Modeling and Control of Multi-Body Mechanical Systems: Part II Grasping under Rolling Contacts between Arbitrary Shapes

Author(s):  
Suguru Arimoto
Robotica ◽  
2007 ◽  
Vol 25 (6) ◽  
pp. 765-777 ◽  
Author(s):  
Andrew D. Lewis

SUMMARYEvidence is presented to indicate that the answer is, “Yes, sometimes.”


2020 ◽  
Vol 10 (20) ◽  
pp. 7175
Author(s):  
Zhongshi Wang ◽  
Dapeng Tian ◽  
Lei Shi ◽  
Jinghong Liu

The dynamics model used for inertially or strapdown inertially stabilized platforms is based on the rotor and motor load, and it either does not consider the stator or it implicitly assumes a fixed stator. It has been determined that vibrations occur in the system when a controller is used in strapdown inertially stabilized platforms with a light base support. As the system is also affected by multi-source disturbances, which are the main factors that affect the control accuracy. For the above two problems, this paper originally establishes a multi-body dynamics model including the controller. The composite controller not only suppresses the vibration successfully, but also greatly improves the disturbance compensation and tracking performance of the strapdown inertially stabilized platforms. Specifically, a modified feedback controller is used to suppress the vibrations analyzed according to the dynamics model. The friction feedforward and residual disturbance observer facilitates the design of compound disturbance compensation on the basis of composite hierarchical anti-disturbance control. To emphasize the advantages of strapdown inertially stabilized platforms, the feedforward controller employs feedforward angular velocity and acceleration. The results of the numerical analysis and experiments indicate that vibrations are successfully suppressed and tracking accuracy and disturbance isolation ability are improved.


Sign in / Sign up

Export Citation Format

Share Document