scholarly journals From Mockups to User Interface Models: An Extensible Model Driven Approach

Author(s):  
José Matías Rivero ◽  
Gustavo Rossi ◽  
Julián Grigera ◽  
Juan Burella ◽  
Esteban Robles Luna ◽  
...  
Author(s):  
Elena Planas ◽  
Gwendal Daniel ◽  
Marco Brambilla ◽  
Jordi Cabot

AbstractSoftware systems start to include other types of interfaces beyond the “traditional” Graphical-User Interfaces (GUIs). In particular, Conversational User Interfaces (CUIs) such as chat and voice are becoming more and more popular. These new types of interfaces embed smart natural language processing components to understand user requests and respond to them. To provide an integrated user experience all the user interfaces in the system should be aware of each other and be able to collaborate. This is what is known as a multiexperience User Interface. Despite their many benefits, multiexperience UIs are challenging to build. So far CUIs are created as standalone components using a platform-dependent set of libraries and technologies. This raises significant integration, evolution and maintenance issues. This paper explores the application of model-driven techniques to the development of software applications embedding a multiexperience User Interface. We will discuss how raising the abstraction level at which these interfaces are defined enables a faster development and a better deployment and integration of each interface with the rest of the software system and the other interfaces with whom it may need to collaborate. In particular, we propose a new Domain Specific Language (DSL) for specifying several types of CUIs and show how this DSL can be part of an integrated modeling environment able to describe the interactions between the modeled CUIs and the other models of the system (including the models of the GUI). We will use the standard Interaction Flow Modeling Language (IFML) as an example “host” language.


2016 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Sarra Roubi ◽  
Mohammed Erramdani ◽  
Samir Mbarki.

<p><span style="font-size: 10.5pt; font-family: 'Times New Roman','serif'; mso-bidi-font-size: 12.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">Web applications have witnessed a significant improvement that exhibit advanced user interface behaviors and functionalities. Along with this evolution, Rich Internet Applications (RIAs) were proposed as a response to these necessities and have combined the richness and interactivity of desktop interfaces into the web distribution model. However, RIAs are complex applications and their development requires designing and implementation which are time-consuming and the available tools are specialized in manual design. In this paper, we present a new model driven approach in which we used well known Model-Driven Engineering (MDE) frameworks and technologies, such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), Query View Transformation (QVTo) and Acceleo to enable the design and the code automatic generation of the RIA. The method focus on simplifying the task for the designer and not necessary be aware of the implementation specification.</span></p>


Author(s):  
Christoph Rieger ◽  
Daniel Lucrédio ◽  
Renata Pontin M. Fortes ◽  
Herbert Kuchen ◽  
Felipe Dias ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 2554
Author(s):  
Yoel Arroyo ◽  
Ana I. Molina ◽  
Miguel A. Redondo ◽  
Jesús Gallardo

This paper introduces Learn-CIAM, a new model-based methodological approach for the design of flows and for the semi-automatic generation of tools in order to support collaborative learning tasks. The main objective of this work is to help professors by establishing a series of steps for the specification of their learning courses and the obtaining of collaborative tools to support certain learning activities (in particular, for in-group editing, searching and modeling). This paper presents a complete methodological framework, how it is supported conceptually and technologically, and an application example. So to guarantee the validity of the proposal, we also present some validation processes with potential designers and users from different profiles such as Education and Computer Science. The results seem to demonstrate a positive reception and acceptance, concluding that its application would facilitate the design of learning courses and the generation of collaborative learning tools for professionals of both profiles.


Sign in / Sign up

Export Citation Format

Share Document