An Iterative Refinement Algorithm for the Minimum Branch Vertices Problem

Author(s):  
Diego M. Silva ◽  
Ricardo M. A. Silva ◽  
Geraldo R. Mateus ◽  
José F. Gonçalves ◽  
Mauricio G. C. Resende ◽  
...  
2021 ◽  
Author(s):  
Yu M. Kulikov ◽  
E. E. Son

Abstract This paper considers the canonical problem of a thin shear layer evolution at Reynolds number Re = 400000 using the novel Compact Accurately Boundary Adjusting high-Resolution Technique (CABARET). The study is focused on the effect of the specific mesh refinement in the high shear rate areas on the flow properties under the influence of the developing instability. The original sequence of computational meshes (256^2, 512^2, 1024^2, 2048^2 cells) is modified using an iterative refinement algorithm based on the hyperbolic tangent. The properties of the solutions obtained are discussed in terms of the initial momentum thickness and the initial vorticity thickness, viscous and dilatational dissipation rates and also integral enstrophy. The growth rate for the most unstable mode depending on the mesh resolution is considered. In conclusion the accuracy of calculated mesh functions is estimated via L1, L2, L∞ norms.


2012 ◽  
Vol 588-589 ◽  
pp. 802-805
Author(s):  
Ban Teng Liu ◽  
Xi Lin Hu ◽  
Zheng Yu Xu ◽  
Yao Lin Liu ◽  
You Rong Chen

This paper propose a two-tiered network in which lower-power users communicate with one another through repeaters, which amplify signals and retransmit them, have limited capacity, and may interfere with one another if their transmitter frequencies are close and they share the same private-line tone. Motivated by cellular networks, this paper gives a naive solution where the number of repeaters and their positions can be obtained analytically. In a circular area with radius 40 miles, 12 repeaters can accommodate 1,000 simultaneous users. This paper further propose an iterative refinement algorithm consisting of three fundamental modules that draw the Voronoi diagram, determine the centers of the circumscribed circles of the Voronoi regions, and escape the local optimum by using external optimization. The algorithm obtains a solution with 11 repeaters, which we prove to be the absolute minimum. For 10,000 users, it uses 104 repeaters, better than the naive solution's 108.


Author(s):  
D. A. Cucci

We propose a new design for an optical coded target based on concentric circles and a position and orientation determination algorithm optimized for high distances compared to the target size. If two ellipses are fitted on the edge pixels corresponding to the outer and inner circles, quasi-analytical methods are known to obtain the coordinates of the projection of the circles center. We show the limits of these methods for quasi-frontal target orientations and in presence of noise and we propose an iterative refinement algorithm based on a geometric invariant. Next, we introduce a closed form, computationally inexpensive, solution to obtain the target position and orientation given the projected circle center and the parameters of the outer circle projection. The viability of the approach is demonstrated based on aerial pictures taken by an UAV from elevations between 10 to 100 m. We obtain a distance RMS below 0.25 % under 50 m and below 1 % under 100 m with a target size of 90 cm, part of which is a deterministic bias introduced by image exposure.


Author(s):  
D. A. Cucci

We propose a new design for an optical coded target based on concentric circles and a position and orientation determination algorithm optimized for high distances compared to the target size. If two ellipses are fitted on the edge pixels corresponding to the outer and inner circles, quasi-analytical methods are known to obtain the coordinates of the projection of the circles center. We show the limits of these methods for quasi-frontal target orientations and in presence of noise and we propose an iterative refinement algorithm based on a geometric invariant. Next, we introduce a closed form, computationally inexpensive, solution to obtain the target position and orientation given the projected circle center and the parameters of the outer circle projection. The viability of the approach is demonstrated based on aerial pictures taken by an UAV from elevations between 10 to 100 m. We obtain a distance RMS below 0.25 % under 50 m and below 1 % under 100 m with a target size of 90 cm, part of which is a deterministic bias introduced by image exposure.


2019 ◽  
Vol 487 (1) ◽  
pp. 1191-1199 ◽  
Author(s):  
M Caleb ◽  
W van Straten ◽  
E F Keane ◽  
A Jameson ◽  
M Bailes ◽  
...  

ABSTRACT We study the polarization properties of 22 known rotating radio transients (RRATs) with the 64-m Parkes radio telescope and present the Faraday rotation measures (RMs) for the 17 with linearly polarized flux exceeding the off-pulse noise by 3σ. Each RM was estimated using a brute-force search over trial RMs that spanned the maximum measurable range $\pm 1.18 \times 10^5 \, \mathrm{rad \, m^2}$ (in steps of 1 $\mathrm{rad \, m^2}$), followed by an iterative refinement algorithm. The measured RRAT RMs are in the range |RM| 1–950 rad m−2 with an average linear polarization fraction of 40 per cent. Individual single pulses are observed to be up to 100 per cent linearly polarized. The RMs of the RRATs and the corresponding inferred average magnetic fields (parallel to the line of sight and weighted by the free electron density) are observed to be consistent with the Galactic plane pulsar population. Faraday rotation analyses are typically performed on accumulated pulsar data, for which hundreds to thousands of pulses have been integrated, rather than on individual pulses. Therefore, we verified the iterative refinement algorithm by performing Monte Carlo simulations of artificial single pulses over a wide range of S/N and RM. At and above an S/N of 17 in linearly polarized flux, the iterative refinement recovers the simulated RM value 100 per cent of the time with a typical mean uncertainty of 5 rad m−2. The method described and validated here has also been successfully used to determine reliable RMs of several fast radio bursts (FRBs) discovered at Parkes.


Author(s):  
Ivan Lebedev ◽  
◽  
Nikolai Savelov ◽  

New research results in the field of accelerated analysis of linear and linearizable electrical circuits with variable elements are presented. The considered algorithms are based on a new modification of Gaussian elim-ination for solution of systems of linear equations. The researches was directed on a systematic thorough study of the phenomenon of quasi-stabilization of the error discovered by the authors during multiple repeated cir-cuit analyzes. The Sherman-Morrison algorithm and the iterative refinement algorithm are considered as alter-natives. To control the results of numerical experiments, the representation of floating-point numbers in the bi-nary128 format of the IEEE 754 standard is used. A method for the machine formation of mathematical models of circuits with an unlimited number of elements is proposed.


Sign in / Sign up

Export Citation Format

Share Document