initial vorticity
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yu M. Kulikov ◽  
E. E. Son

Abstract This paper considers the canonical problem of a thin shear layer evolution at Reynolds number Re = 400000 using the novel Compact Accurately Boundary Adjusting high-Resolution Technique (CABARET). The study is focused on the effect of the specific mesh refinement in the high shear rate areas on the flow properties under the influence of the developing instability. The original sequence of computational meshes (256^2, 512^2, 1024^2, 2048^2 cells) is modified using an iterative refinement algorithm based on the hyperbolic tangent. The properties of the solutions obtained are discussed in terms of the initial momentum thickness and the initial vorticity thickness, viscous and dilatational dissipation rates and also integral enstrophy. The growth rate for the most unstable mode depending on the mesh resolution is considered. In conclusion the accuracy of calculated mesh functions is estimated via L1, L2, L∞ norms.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lucia Oliva ◽  
Salvatore Plumari ◽  
Vincenzo Greco

Abstract We present a study of the directed flow v1 for D mesons discussing both the impact of initial vorticity and electromagnetic field. Recent studies predicted that v1 for D mesons is expected to be surprisingly much larger than that of light charged hadrons; we clarify that this is due to a different mechanism leading to the formation of a directed flow with respect to the one of the bulk matter at both relativistic and non-relativistic energies. We point out that the very large v1 for D mesons can be generated only if there is a longitudinal asymmetry between the bulk matter and the charm quarks and if the latter have a large non-perturbative interaction in the QGP medium. A quite good agreement with the data of STAR and ALICE is obtained if the diffusion coefficient able to correctly predict the RAA(pT), v2(pT) and v3(pT) of D meson is employed. Furthermore, the mechanism for the build-up of the v1(y) is associated to a quite small formation time that can be expected to be more sensitive to the initial high-temperature dependence of the charm diffusion coefficient.We discuss also the splitting of v1 for D0 and $$ {\overline{D}}^0 $$ D ¯ 0 due to the electromagnetic field that is again much larger than the one observed for charged particles and in agreement with the data by STAR that have however still error bars comparable with the splitting itself, while at LHC standard electromagnetic profile assuming a constant conductivity is not able to account for the huge splitting observed.


2019 ◽  
pp. 146808741989542 ◽  
Author(s):  
Kassandra Makri ◽  
Russel Lockett ◽  
Mahesh Jeshani

Samples of unadditised, middle distillate diesel fuel were injected through real-size optically accessible mini-sac diesel injectors into ambient air at common rail pressures of 250 and 350 bar, respectively. High-resolution images of white light scattered from the internal mini-sac and nozzle flow were captured on a high-speed monochrome video camera. Following the end of each injection, the momentum-driven evacuation of fuel liquid from the mini-sac and nozzle holes resulted in the formation of a vapour cloud and bubbles in the mini-sac, and vapour capsules in the nozzle holes. This permitted external gas to gain entrance to the nozzle holes. The diesel fuel in the mini-sac was observed to rotate with large initial vorticity, which decayed until the fuel became stationary. The diesel fuel remaining in the nozzle holes was observed to move inwards towards the mini-sac or outwards towards the nozzle exit in concert with the rotational flow in the mini-sac. The mini-sac bubbles’ internal pressure differences revealed that the bubbles must have contained previously dissolved oxygen and nitrogen. Under diesel engine operating conditions, this multi-phase mixture would be highly reactive and could initiate local pyrolysis and/or oxidation reactions. Finally, the dynamical behaviour of the diesel fuel in the nozzle holes would support the admission of external hot combustion gases into the nozzle holes, establishing the conditions for oxidation/pyrolysis reactions with surrounding liquid fuel films.


2015 ◽  
Vol 786 ◽  
pp. 1-4 ◽  
Author(s):  
Paul K. Newton

The paper by Dritschel et al. (J. Fluid Mech., vol. 783, 2015, pp. 1–22) describes the long-time behaviour of inviscid two-dimensional fluid dynamics on the surface of a sphere. At issue is whether the flow settles down to an equilibrium or whether, for generic (random) initial conditions, the long-time solution is periodic, quasi-periodic or chaotic. While it might be surprising that this issue is not settled in the literature, it is important to keep in mind that the Euler equations form a dissipationless Hamiltonian system, hence the set of equations only redistributes the initial vorticity, generating smaller and smaller scales, while keeping kinetic energy, angular impulse and an infinite family of vorticity moments (Casimirs) intact. While special solutions that never settle down to an equilibrium state can be constructed using point vortices, vortex patches and other distributions, the fate of random initial conditions is a trickier problem. Previous statistical theories indicate that the long-time state should be a stationary large-scale distribution of vorticity. By carrying out careful numerical simulations using two different methods, the authors make a compelling case that the generic long-time state resembles a large-scale oscillating quadrupolar vorticity field, surrounded by persistent small-scale vortices. While numerical simulations can never conclusively settle this issue, the results might help guide future theories that seek to prove the existence of such an interesting dynamical long-time state.


2015 ◽  
Vol 783 ◽  
pp. 1-22 ◽  
Author(s):  
David G. Dritschel ◽  
Wanming Qi ◽  
J. B. Marston

Using complementary numerical approaches at high resolution, we study the late-time behaviour of an inviscid incompressible two-dimensional flow on the surface of a sphere. Starting from a random initial vorticity field comprised of a small set of intermediate-wavenumber spherical harmonics, we find that, contrary to the predictions of equilibrium statistical mechanics, the flow does not evolve into a large-scale steady state. Instead, significant unsteadiness persists, characterised by a population of persistent small-scale vortices interacting with a large-scale oscillating quadrupolar vorticity field. Moreover, the vorticity develops a stepped, staircase distribution, consisting of nearly homogeneous regions separated by sharp gradients. The persistence of unsteadiness is explained by a simple point-vortex model characterising the interactions between the four main vortices which emerge.


2015 ◽  
Vol 766 ◽  
pp. 337-367 ◽  
Author(s):  
Bartosz Protas ◽  
Bernd R. Noack ◽  
Jan Östh

AbstractWe propose a variational approach to the identification of an optimal nonlinear eddy viscosity as a subscale turbulence representation for proper orthogonal decomposition (POD) models. The ansatz for the eddy viscosity is given in terms of an arbitrary function of the resolved fluctuation energy. This function is found as a minimizer of a cost functional measuring the difference between the target data coming from a resolved direct or large-eddy simulation of the flow and its reconstruction based on the POD model. The optimization is performed with a data-assimilation approach generalizing the 4D-VAR method. POD models with optimal eddy viscosities are presented for a 2D incompressible mixing layer at $\mathit{Re}=500$ (based on the initial vorticity thickness and the velocity of the high-speed stream) and a 3D Ahmed body wake at $\mathit{Re}=300\,000$ (based on the body height and the free-stream velocity). The variational optimization formulation elucidates a number of interesting physical insights concerning the eddy-viscosity ansatz used. The 20-dimensional model of the mixing-layer reveals a negative eddy-viscosity regime at low fluctuation levels which improves the transient times towards the attractor. The 100-dimensional wake model yields more accurate energy distributions as compared to the nonlinear modal eddy-viscosity benchmark proposed recently by Östh et al. (J. Fluid Mech., vol. 747, 2014, pp. 518–544). Our methodology can be applied to construct quite arbitrary closure relations and, more generally, constitutive relations optimizing statistical properties of a broad class of reduced-order models.


2014 ◽  
Vol 749 ◽  
pp. 404-430 ◽  
Author(s):  
Vladislav Zheligovsky ◽  
Uriel Frisch

AbstractIt is known that the Eulerian and Lagrangian structures of fluid flow can be drastically different; for example, ideal fluid flow can have a trivial (static) Eulerian structure, while displaying chaotic streamlines. Here, we show that ideal flow with limited spatial smoothness (an initial vorticity that is just a little better than continuous) nevertheless has time-analytic Lagrangian trajectories before the initial limited smoothness is lost. To prove these results we use a little-known Lagrangian formulation of ideal fluid flow derived by Cauchy in 1815 in a manuscript submitted for a prize of the French Academy. This formulation leads to simple recurrence relations among the time-Taylor coefficients of the Lagrangian map from initial to current fluid particle positions; the coefficients can then be bounded using elementary methods. We first consider various classes of incompressible fluid flow, governed by the Euler equations, and then turn to highly compressible flow, governed by the Euler–Poisson equations, a case of cosmological relevance. The recurrence relations associated with the Lagrangian formulation of these incompressible and compressible problems are so closely related that the proofs of time-analyticity are basically identical.


2014 ◽  
Vol 18 (2) ◽  
pp. 272-294 ◽  
Author(s):  
Rohitashwa Kiran ◽  
Indrek Wichman ◽  
Norbert Mueller

2011 ◽  
Vol 682 ◽  
pp. 304-331 ◽  
Author(s):  
FAZLE HUSSAIN ◽  
DHOORJATY S. PRADEEP ◽  
ERIC STOUT

Growth of optimal transient perturbations to an Oseen vortex column into the nonlinear regime is studied via direct numerical simulation (DNS) for Reynolds number, Re (≡ circulation/viscosity), up to 10000. An optimal bending-wave transient mode is obtained from linear analysis and used as the initial condition. (DNS of a vortex column embedded in finer-scale turbulence reveals that optimal modes are preferentially excited during vortex–turbulence interaction.) Tilting of the optimal mode's radial vorticity perturbation into the azimuthal direction and its concomitant stretching by the column's strain field produces positive Reynolds stress, hence kinetic energy growth. Modes experiencing the largest growth are those with initial vorticity localized at a ‘critical radius’ outside the core, such that this perturbation vorticity resonantly induces core waves. Resonant forcing leads to growth of perturbation energy concentrated within the core. Moderate-amplitude (~5%) perturbations cause significant distortion of the core and generate secondary filament-like spiral structures (‘threads’) outside the core. As the mode evolves into the nonlinear regime, radially outward self-advection of thread dipoles accelerates growth arrest by removing the perturbation from the critical radius and disrupting resonant forcing. With increasing Re, the evolving vorticity patterns become more chaotic, more turbulent-like (finer scaled, contorted vorticity), and persist longer. This suggests that at typical Re (~106), nonlinear transient growth may indeed be able to break up, hence induce rapid decay of, column vortices – highly relevant for addressing the aircraft wake hazard crisis and the looming air traffic capacity crisis. In addition, we discover a regenerative transient growth scenario in which threads induce secondary perturbations closer to the vortex column. A parent–offspring regenerative mechanism is postulated and verified by DNS. There is a clear trend towards stronger regenerative growth with increasing Re. These results, showing an important role of transient growth in turbulent vortex decay, are highly relevant to the prediction and control of vortex-dominated flows.


Sign in / Sign up

Export Citation Format

Share Document