scholarly journals Optimizing Linear Discriminant Error Correcting Output Codes Using Particle Swarm Optimization

Author(s):  
Dimitrios Bouzas ◽  
Nikolaos Arvanitopoulos ◽  
Anastasios Tefas
2013 ◽  
Vol 23 (06) ◽  
pp. 1350026 ◽  
Author(s):  
WEI-YEN HSU

In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain–computer interface (BCI) applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yingji Qi ◽  
Feng Ding ◽  
Fangzhou Xu ◽  
Jimin Yang

Brain-computer interface (BCI) is a communication and control system linking the human brain and computers or other electronic devices. However, irrelevant channels and misleading features unrelated to tasks limit classification performance. To address these problems, we propose an efficient signal processing framework based on particle swarm optimization (PSO) for channel and feature selection, channel selection, and feature selection. Modified Stockwell transforms were used for a feature extraction, and multilevel hybrid PSO-Bayesian linear discriminant analysis was applied to optimization and classification. The BCI Competition III dataset I was used here to confirm the superiority of the proposed scheme. Compared to a method without optimization (89% accuracy), the best classification accuracy of the PSO-based scheme was 99% when less than 10.5% of the original features were used, the test time was reduced by more than 90%, and it achieved Kappa values and F-score of 0.98 and 98.99%, respectively, and better signal-to-noise ratio, thereby outperforming existing algorithms. The results show that the channel and feature selection scheme can accelerate the speed of convergence to the global optimum and reduce the training time. As the proposed framework can significantly improve classification performance, effectively reduce the number of features, and greatly shorten the test time, it can serve as a reference for related real-time BCI application system research.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document