A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor Architecture

Author(s):  
Yasutaka Wada ◽  
Akihiro Hayashi ◽  
Takeshi Masuura ◽  
Jun Shirako ◽  
Hirofumi Nakano ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Hao Lu ◽  
Zhiqiang Wei ◽  
Cunji Wang ◽  
Jingjing Guo ◽  
Yuandong Zhou ◽  
...  

Ultra-large-scale molecular docking can improve the accuracy of lead compounds in drug discovery. In this study, we developed a molecular docking piece of software, Vina@QNLM, which can use more than 4,80,000 parallel processes to search for potential lead compounds from hundreds of millions of compounds. We proposed a task scheduling mechanism for large-scale parallelism based on Vinardo and Sunway supercomputer architecture. Then, we readopted the core docking algorithm to incorporate the full advantage of the heterogeneous multicore processor architecture in intensive computing. We successfully expanded it to 10, 465, 065 cores (1,61,001 management process elements and 0, 465, 065 computing process elements), with a strong scalability of 55.92%. To the best of our knowledge, this is the first time that 10 million cores are used for molecular docking on Sunway. The introduction of the heterogeneous multicore processor architecture achieved the best speedup, which is 11x more than that of the management process element of Sunway. The performance of Vina@QNLM was comprehensively evaluated using the CASF-2013 and CASF-2016 protein–ligand benchmarks, and the screening power was the highest out of the 27 pieces of software tested in the CASF-2013 benchmark. In some existing applications, we used Vina@QNLM to dock more than 10 million molecules to nine rigid proteins related to SARS-CoV-2 within 8.5 h on 10 million cores. We also developed a platform for the general public to use the software.


2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
Hyunjin Lee ◽  
Lei Jin ◽  
Kiyeon Lee ◽  
Socrates Demetriades ◽  
Michael Moeng ◽  
...  

Author(s):  
Lavanya Dhanesh ◽  
P. Murugesan

Scheduling of tasks based on real time requirement is a major issue in the heterogeneous multicore systemsfor micro-grid power management . Heterogeneous multicore processor schedules the serial tasks in the high performance core and parallel tasks are executed on the low performance cores. The aim of this paper is to implement a scheduling algorithm based on fuzzy logic for heterogeneous multicore processor for effective micro-grid application. Real – time tasks generally have different execution time and dead line. The main idea is to use two fuzzy logic based scheduling algorithm, first is to assign priority based on execution time and deadline of the task. Second , the task which has assigned higher priority get allotted for execution in high performance core and remaining tasks which are assigned low priority get allotted in low performance cores. The main objective of this scheduling algorithm is to increase the throughput and to improve CPU utilization there by reducing the overall power consumption of the micro-grid power management systems. Test cases with different task execution time and deadline were generated to evaluate the algorithms using  MATLAB software.


Sign in / Sign up

Export Citation Format

Share Document