The Application of Monte Carlo Method Simulation in Wind Power Investment Project

Author(s):  
Wu Yunna ◽  
Hu Xinliang ◽  
Shen Yue
2020 ◽  
Vol 22 (1) ◽  
pp. 119-124
Author(s):  
Volodymyr Kharchenko ◽  
◽  
Hanna Kharchenko ◽  

Introduction. The article deals with the modeling features in the implementation of investment projects using the Monte Carlo method. The purpose of the article is to substantiate the feasibility of using economic and mathematical models to identify the risks of investment projects in agricultural production, taking into account the randomness of factors. Results. The expediency of using this method during the analysis of projects in agriculture is determined. This type of modeling is a universal method of research and evaluation of the effectiveness of open systems, the behavior of which depends on the influence of random factors. Particular attention is paid in such cases to decisions on the implementation of investment projects. The expediency of using this method in the analysis of projects in agriculture is determined. The main characteristics of the investment project are considered: investments involve significant financial costs; investment return can be obtained in a few years; there are elements of risk and uncertainty in forecasting the results of the investment project. The algorithm of the analysis of investment projects consisting of various stages is offered. The importance of investigating the risks of investment projects in agricultural production is substantiated. It is investigated that the basis of the Monte Carlo method is a random number generator, which consists of two stages: generation of a normalized random number (uniformly distributed from 0 to 1) and conversion of a random number into an arbitrary distribution law. The task of choosing an investment project for a pig farm is proposed. The calculations revealed that the amount of the expected NPV is UAH 63,158.80 with a standard deviation of UAH 43,777.90. The coefficient of variation was 0.69, so the risk of this project is generally lower than the average risk of the investment portfolio of the farm. Conclusions. The results of the analysis obtained using the method of Monte Carlo simulation are quite simple to interpret and reflect the change of factors over a significant interval, taking into account the probabilistic nature of economic factors. Thus, this method allows the implementation of the investment project to assess the impact of uncertainty on the final result of the project.


2013 ◽  
Vol 724-725 ◽  
pp. 522-526
Author(s):  
Yi Long Li ◽  
Da Hai You ◽  
Ke Wang ◽  
Ke Tian ◽  
Kai Pan

There is a certain degree of correlation between the outputs of different wind farms because of their geographic distribution in power grid. And the complementary effect can alleviate the adverse effects of peak-load regulation caused by the large-scale wind power integration. In this paper, Nataf transformation was used to establish wind speed samples of correlative wind farms to get correlative wind power. Based on this, the peak-load regulating adequacy was evaluated using Monte-Carlo method on IEEE-RTS system with wind farms. The result presents the quantitative analysis of the impact of correlative wind farms on peak-load regulating adequacy. And it improves the original peak-load regulating adequacy evaluation based on Monte-Carlo method, which has the relatively conservative results.


1974 ◽  
Vol 22 ◽  
pp. 307 ◽  
Author(s):  
Zdenek Sekanina

AbstractIt is suggested that the outbursts of Periodic Comet Schwassmann-Wachmann 1 are triggered by impacts of interplanetary boulders on the surface of the comet’s nucleus. The existence of a cloud of such boulders in interplanetary space was predicted by Harwit (1967). We have used the hypothesis to calculate the characteristics of the outbursts – such as their mean rate, optically important dimensions of ejected debris, expansion velocity of the ejecta, maximum diameter of the expanding cloud before it fades out, and the magnitude of the accompanying orbital impulse – and found them reasonably consistent with observations, if the solid constituent of the comet is assumed in the form of a porous matrix of lowstrength meteoric material. A Monte Carlo method was applied to simulate the distributions of impacts, their directions and impact velocities.


Sign in / Sign up

Export Citation Format

Share Document