Is the Outcome of Optimizing the System Acquisition Parameters Sensitive to the Reconstruction Algorithm in Digital Breast Tomosynthesis?

Author(s):  
Rongping Zeng ◽  
Subok Park ◽  
Predrag R. Bakic ◽  
Kyle J. Myers
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tsutomu Gomi ◽  
Yukio Koibuchi

Purpose. We evaluated the efficacies of the adaptive steepest descent projection onto convex sets (ASD-POCS), simultaneous algebraic reconstruction technique (SART), filtered back projection (FBP), and maximum likelihood expectation maximization (MLEM) total variation minimization iterative algorithms for reducing exposure doses during digital breast tomosynthesis for reduced projections. Methods. Reconstructions were evaluated using normal (15 projections) and half (i.e., thinned-out normal) projections (seven projections). The algorithms were assessed by determining the full width at half-maximum (FWHM), and the BR3D Phantom was used to evaluate the contrast-to-noise ratio (CNR) for the in-focus plane. A mean similarity measure of structural similarity (MSSIM) was also used to identify the preservation of contrast in clinical cases. Results. Spatial resolution tended to deteriorate in ASD-POCS algorithm reconstructions involving a reduced number of projections. However, the microcalcification size did not affect the rate of FWHM change. The ASD-POCS algorithm yielded a high CNR independently of the simulated mass lesion size and projection number. The ASD-POCS algorithm yielded a high MSSIM in reconstructions from reduced numbers of projections. Conclusions. The ASD-POCS algorithm can preserve contrast despite a reduced number of projections and could therefore be used to reduce radiation doses.


2017 ◽  
Vol 59 (9) ◽  
pp. 1051-1059 ◽  
Author(s):  
Alejandro Rodriguez-Ruiz ◽  
Jonas Teuwen ◽  
Suzan Vreemann ◽  
Ramona W Bouwman ◽  
Ruben E van Engen ◽  
...  

Background The image quality of digital breast tomosynthesis (DBT) volumes depends greatly on the reconstruction algorithm. Purpose To compare two DBT reconstruction algorithms used by the Siemens Mammomat Inspiration system, filtered back projection (FBP), and FBP with iterative optimizations (EMPIRE), using qualitative analysis by human readers and detection performance of machine learning algorithms. Material and Methods Visual grading analysis was performed by four readers specialized in breast imaging who scored 100 cases reconstructed with both algorithms (70 lesions). Scoring (5-point scale: 1 = poor to 5 = excellent quality) was performed on presence of noise and artifacts, visualization of skin-line and Cooper’s ligaments, contrast, and image quality, and, when present, lesion visibility. In parallel, a three-dimensional deep-learning convolutional neural network (3D-CNN) was trained (n = 259 patients, 51 positives with BI-RADS 3, 4, or 5 calcifications) and tested (n = 46 patients, nine positives), separately with FBP and EMPIRE volumes, to discriminate between samples with and without calcifications. The partial area under the receiver operating characteristic curve (pAUC) of each 3D-CNN was used for comparison. Results EMPIRE reconstructions showed better contrast (3.23 vs. 3.10, P = 0.010), image quality (3.22 vs. 3.03, P < 0.001), visibility of calcifications (3.53 vs. 3.37, P = 0.053, significant for one reader), and fewer artifacts (3.26 vs. 2.97, P < 0.001). The 3D-CNN-EMPIRE had better performance than 3D-CNN-FBP (pAUC-EMPIRE = 0.880 vs. pAUC-FBP = 0.857; P < 0.001). Conclusion The new algorithm provides DBT volumes with better contrast and image quality, fewer artifacts, and improved visibility of calcifications for human observers, as well as improved detection performance with deep-learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document