A Tight Upper Bound on the Number of Variables for Average-Case k-Clique on Ordered Graphs

Author(s):  
Benjamin Rossman
2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


2012 ◽  
Vol 23 (05) ◽  
pp. 969-984 ◽  
Author(s):  
SABINE BRODA ◽  
ANTÓNIO MACHIAVELO ◽  
NELMA MOREIRA ◽  
ROGÉRIO REIS

In this paper, the relation between the Glushkov automaton [Formula: see text] and the partial derivative automaton [Formula: see text] of a given regular expression, in terms of transition complexity, is studied. The average transition complexity of [Formula: see text] was proved by Nicaud to be linear in the size of the corresponding expression. This result was obtained using an upper bound of the number of transitions of [Formula: see text]. Here we present a new quadratic construction of [Formula: see text] that leads to a more elegant and straightforward implementation, and that allows the exact counting of the number of transitions. Based on that, a better estimation of the average size is presented. Asymptotically, and as the alphabet size grows, the number of transitions per state is on average 2. Broda et al. computed an upper bound for the ratio of the number of states of [Formula: see text] to the number of states of [Formula: see text] which is about ½ for large alphabet sizes. Here we show how to obtain an upper bound for the number of transitions in [Formula: see text], which we then use to get an average case approximation. In conclusion, assymptotically, and for large alphabets, the size of [Formula: see text] is half the size of the [Formula: see text]. This is corroborated by some experiments, even for small alphabets and small regular expressions.


10.37236/6735 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
P. A. CrowdMath

Let $ex(n, P)$ be the maximum possible number of ones in any 0-1 matrix of dimensions $n \times n$ that avoids $P$. Matrix $P$ is called minimally non-linear if $ex(n, P) \neq O(n)$ but $ex(n, P') = O(n)$ for every proper subpattern $P'$ of $P$. We prove that the ratio between the length and width of any minimally non-linear 0-1 matrix is at most $4$, and that a minimally non-linear 0-1 matrix with $k$ rows has at most $5k-3$ ones. We also obtain an upper bound on the number of minimally non-linear 0-1 matrices with $k$ rows.In addition, we prove corresponding bounds for minimally non-linear ordered graphs. The minimal non-linearity that we investigate for ordered graphs is for the extremal function $ex_{<}(n, G)$, which is the maximum possible number of edges in any ordered graph on $n$ vertices with no ordered subgraph isomorphic to $G$.


10.37236/8085 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Dhruv Rohatgi

For ordered graphs $G$ and $H$, the ordered Ramsey number $r_<(G,H)$ is the smallest $n$ such that every red/blue edge coloring of the complete ordered graph on vertices $\{1,\dots,n\}$ contains either a blue copy of $G$ or a red copy of $H$, where the embedding must preserve the relative order of vertices. One number of interest, first studied by Conlon, Fox, Lee, and Sudakov, is the off-diagonal ordered Ramsey number $r_<(M, K_3)$, where $M$ is an ordered matching on $n$ vertices. In particular, Conlon et al. asked what asymptotic bounds (in $n$) can be obtained for $\max r_<(M, K_3)$, where the maximum is over all ordered matchings $M$ on $n$ vertices. The best-known upper bound is $O(n^2/\log n)$, whereas the best-known lower bound is $\Omega((n/\log n)^{4/3})$, and Conlon et al. hypothesize that there is some fixed $\epsilon > 0$ such that $r_<(M, K_3) = O(n^{2-\epsilon})$ for every ordered matching $M$. We resolve two special cases of this conjecture. We show that the off-diagonal ordered Ramsey numbers for ordered matchings in which edges do not cross are nearly linear. We also prove a truly sub-quadratic upper bound for random ordered matchings with interval chromatic number $2$.


2020 ◽  
Vol 64 (7) ◽  
pp. 1197-1224
Author(s):  
Florian Stober ◽  
Armin Weiß

AbstractMergeInsertion, also known as the Ford-Johnson algorithm, is a sorting algorithm which, up to today, for many input sizes achieves the best known upper bound on the number of comparisons. Indeed, it gets extremely close to the information-theoretic lower bound. While the worst-case behavior is well understood, only little is known about the average case. This work takes a closer look at the average case behavior. In particular, we establish an upper bound of $n \log n - 1.4005n + o(n)$ n log n − 1.4005 n + o ( n ) comparisons. We also give an exact description of the probability distribution of the length of the chain a given element is inserted into and use it to approximate the average number of comparisons numerically. Moreover, we compute the exact average number of comparisons for n up to 148. Furthermore, we experimentally explore the impact of different decision trees for binary insertion. To conclude, we conduct experiments showing that a slightly different insertion order leads to a better average case and we compare the algorithm to Manacher’s combination of merging and MergeInsertion as well as to the recent combined algorithm with (1,2)-Insertionsort by Iwama and Teruyama.


Sign in / Sign up

Export Citation Format

Share Document