scholarly journals Stochastic Flips on Dimer Tilings

2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.

2006 ◽  
Vol 6 (6) ◽  
pp. 483-494
Author(s):  
T. Tulsi ◽  
L.K. Grover ◽  
A. Patel

The standard quantum search lacks a feature, enjoyed by many classical algorithms, of having a fixed point, i.e. monotonic convergence towards the solution. Recently a fixed point quantum search algorithm has been discovered, referred to as the Phase-\pi/3 search algorithm, which gets around this limitation. While searching a database for a target state, this algorithm reduces the error probability from \epsilon to \epsilon^{2q+1} using q oracle queries, which has since been proved to be asymptotically optimal. A different algorithm is presented here, which has the same worst-case behavior as the Phase-\pi/3 search algorithm but much better average-case behavior. Furthermore the new algorithm gives \epsilon^{2q+1} convergence for all integral q, whereas the Phase-\pi/3 search algorithm requires q to be (3^{n}-1)/2 with n a positive integer. In the new algorithm, the operations are controlled by two ancilla qubits, and fixed point behavior is achieved by irreversible measurement operations applied to these ancillas. It is an example of how measurement can allow us to bypass some restrictions imposed by unitarity on quantum computing.


1992 ◽  
Vol 21 (384) ◽  
Author(s):  
Flemming Nielson ◽  
Hanne Riis Nielson

This paper provides a link between the formulation of static program analyses using the framework of abstract interpretation (popular for functional languages) and using the more classical framework of data flow analysis (popular for imperative languages). In particular we show how the classical notions of fastness, rapidity and k-boundedness carry over to the abstract interpretation framework and how this may be used to bound the number of times a functional should be unfolded in order to yield the fixed point. This is supplemented with a number of results on how to calculate the bounds for iterative forms (as for tail recursion), for linear forms (as for one nested recursive call), and for primitive recursive forms. In some cases this improves the ''worst case'' results of H.R. Nielson and F. Nielson: Bounded Fixed Point Iteration, but more importantly it gives much better ''average case'' results.


2008 ◽  
Vol Vol. 10 no. 3 ◽  
Author(s):  
Cyril Gavoille ◽  
Nicolas Hanusse

International audience In this paper we show an information-theoretic lower bound of kn - o(kn) on the minimum number of bits to represent an unlabeled simple connected n-node graph of pagenumber k. This has to be compared with the efficient encoding scheme of Munro and Raman of 2kn + 2m + o(kn+m) bits (m the number of edges), that is 4kn + 2n + o(kn) bits in the worst-case. For m-edge graphs of pagenumber k (with multi-edges and loops), we propose a 2mlog2k + O(m) bits encoding improving the best previous upper bound of Munro and Raman whenever m ≤ 1 / 2kn/log2 k. Actually our scheme applies to k-page embedding containing multi-edge and loops. Moreover, with an auxiliary table of o(m log k) bits, our coding supports (1) the computation of the degree of a node in constant time, (2) adjacency queries with O(logk) queries of type rank, select and match, that is in O(logk *minlogk / loglogm, loglogk) time and (3) the access to δ neighbors in O(δ) runs of select, rank or match;.


1998 ◽  
Vol Vol. 2 ◽  
Author(s):  
Giovanni Manzini

International audience In this paper we consider the problem of computing on a local memory machine the product y = Ax,where A is a random n×n sparse matrix with Θ (n) nonzero elements. To study the average case communication cost of this problem, we introduce four different probability measures on the set of sparse matrices. We prove that on most local memory machines with p processors, this computation requires Ω ((n/p) \log p) time on the average. We prove that the same lower bound also holds, in the worst case, for matrices with only 2n or 3n nonzero elements.


1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Keqin Li

International audience In this paper, we consider the problem of scheduling independent parallel tasks in parallel systems with identical processors. The problem is NP-hard, since it includes the bin packing problem as a special case when all tasks have unit execution time. We propose and analyze a simple approximation algorithm called H_m, where m is a positive integer. Algorithm H_m has a moderate asymptotic worst-case performance ratio in the range [4/3 ... 31/18] for all m≥ 6; but the algorithm has a small asymptotic worst-case performance ratio in the range [1+1/(r+1)..1+1/r], when task sizes do not exceed 1/r of the total available processors, where r>1 is an integer. Furthermore, we show that if the task sizes are independent, identically distributed (i.i.d.) uniform random variables, and task execution times are i.i.d. random variables with finite mean and variance, then the average-case performance ratio of algorithm H_m is no larger than 1.2898680..., and for an exponential distribution of task sizes, it does not exceed 1.2898305.... As demonstrated by our analytical as well as numerical results, the average-case performance ratio improves significantly when tasks request for smaller numbers of processors.


2001 ◽  
Vol Vol. 4 no. 2 ◽  
Author(s):  
Nir Namman ◽  
Raphaël Rom

International audience We investigate a scheduling problem in which packets, or datagrams, may be fragmented. While there are a few applications to scheduling with datagram fragmentation, our model of the problem is derived from a scheduling problem present in data over CATV networks. In the scheduling problem datagrams of variable lengths must be assigned (packed) into fixed length time slots. One of the capabilities of the system is the ability to break a datagram into several fragments. When a datagram is fragmented, extra bits are added to the original datagram to enable the reassembly of all the fragments. We convert the scheduling problem into the problem of bin packing with item fragmentation, which we define in the following way: we are asked to pack a list of items into a minimum number of unit capacity bins. Each item may be fragmented in which case overhead units are added to the size of every fragment. The cost associated with fragmentation renders the problem NP-hard, therefore an approximation algorithm is needed. We define a version of the well-known Next-Fit algorithm, capable of fragmenting items, and investigate its performance. We present both worst case and average case results and compare them to the case where fragmentation is not allowed.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Nadia Creignou ◽  
Hervé Daudé ◽  
Olivier Dubois

International audience For a large number of random Boolean constraint satisfaction problems, such as random $k$-SAT, we study how the number of locally maximal solutions evolves when constraints are added. We give the exponential order of the expected number of these distinguished solutions and prove it depends on the sensitivity of the allowed constraint functions only. As a by-product we provide a general tool for computing an upper bound of the satisfiability threshold for any problem of a large class of random Boolean CSPs.


2020 ◽  
Vol 64 (7) ◽  
pp. 1197-1224
Author(s):  
Florian Stober ◽  
Armin Weiß

AbstractMergeInsertion, also known as the Ford-Johnson algorithm, is a sorting algorithm which, up to today, for many input sizes achieves the best known upper bound on the number of comparisons. Indeed, it gets extremely close to the information-theoretic lower bound. While the worst-case behavior is well understood, only little is known about the average case. This work takes a closer look at the average case behavior. In particular, we establish an upper bound of $n \log n - 1.4005n + o(n)$ n log n − 1.4005 n + o ( n ) comparisons. We also give an exact description of the probability distribution of the length of the chain a given element is inserted into and use it to approximate the average number of comparisons numerically. Moreover, we compute the exact average number of comparisons for n up to 148. Furthermore, we experimentally explore the impact of different decision trees for binary insertion. To conclude, we conduct experiments showing that a slightly different insertion order leads to a better average case and we compare the algorithm to Manacher’s combination of merging and MergeInsertion as well as to the recent combined algorithm with (1,2)-Insertionsort by Iwama and Teruyama.


Author(s):  
Sunil Pathak

Background: The significant work has been present to identify suspects, gathering information and examining any videos from CCTV Footage. This exploration work expects to recognize suspicious exercises, i.e. object trade, passage of another individual, peeping into other's answer sheet and individual trade from the video caught by a reconnaissance camera amid examinations. This requires the procedure of face acknowledgment, hand acknowledgment and distinguishing the contact between the face and hands of a similar individual and that among various people. Methods: Segmented frames has given as input to obtain foreground image with the help of Gaussian filtering and background modeling method. Suh foreground images has given to Activity Recognition model to detect normal activity or suspicious activity. Results: Accuracy rate, Precision and Recall are calculate for activities detection, contact detection for Best Case, Average Case and Worst Case. Simulation results are compare with performance parameter such as Material Exchange, Position Exchange, and Introduction of a new person, Face and Hand Detection and Multi Person Scenario. Conclusion: In this paper, a framework is prepared for suspect detection. This framework will absolutely realize an unrest in the field of security observation in the training area.


Sign in / Sign up

Export Citation Format

Share Document