SMT to Prevent Missing and Improper Fine Chip Insertions Using Fiber Sensors

Author(s):  
Heon-Taek Kong ◽  
Young-Min Kim ◽  
Chi-Su Kim
Keyword(s):  
2018 ◽  
Vol 1-2 ◽  
pp. 108-120
Author(s):  
K Zhukov ◽  
D Simikin ◽  
M Taranov

2013 ◽  
Vol 543 ◽  
pp. 302-305
Author(s):  
Daniele Tosi ◽  
Massimo Olivero ◽  
Alberto Vallan ◽  
Guido Perrone

The paper analyzes the feasibility of cost-effective fiber sensors for the measurement of small vibrations, from low to medium-high frequencies, in which the complexity of the measurement is moved from expensive optics to cheap electronics without losing too much performance thanks to signal processing algorithms. Two optical approaches are considered: Bragg gratings in standard telecom fibers, which represent the most common type of commercial fiber sensors, and specifically developed sensors made with plastic optical fibers. In both cases, to keep the overall cost low, vibrations are converted into variations of the light intensity, although this makes the received signal more sensitive to noise. Then, adaptive filters and advanced spectral estimation techniques are used to mitigate noise and improve the sensitivity. Preliminary results have demonstrated that the combined effect of these techniques can yield to a signal-to-noise improvement of about 30 dB, bringing the proposed approaches to the level of the most performing sensors for the measurement of vibrations.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1818
Author(s):  
Mattia Francesco Bado ◽  
Joan R. Casas

The present work is a comprehensive collection of recently published research articles on Structural Health Monitoring (SHM) campaigns performed by means of Distributed Optical Fiber Sensors (DOFS). The latter are cutting-edge strain, temperature and vibration monitoring tools with a large potential pool, namely their minimal intrusiveness, accuracy, ease of deployment and more. Its most state-of-the-art feature, though, is the ability to perform measurements with very small spatial resolutions (as small as 0.63 mm). This review article intends to introduce, inform and advise the readers on various DOFS deployment methodologies for the assessment of the residual ability of a structure to continue serving its intended purpose. By collecting in a single place these recent efforts, advancements and findings, the authors intend to contribute to the goal of collective growth towards an efficient SHM. The current work is structured in a manner that allows for the single consultation of any specific DOFS application field, i.e., laboratory experimentation, the built environment (bridges, buildings, roads, etc.), geotechnical constructions, tunnels, pipelines and wind turbines. Beforehand, a brief section was constructed around the recent progress on the study of the strain transfer mechanisms occurring in the multi-layered sensing system inherent to any DOFS deployment (different kinds of fiber claddings, coatings and bonding adhesives). Finally, a section is also dedicated to ideas and concepts for those novel DOFS applications which may very well represent the future of SHM.


2021 ◽  
Vol 24 (5) ◽  
pp. 50-55
Author(s):  
Chiara Perri ◽  
Francesco Arcadio ◽  
Girolamo D'Agostino ◽  
Nunzio Cennamo ◽  
Giovanni Porto ◽  
...  

1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari ◽  
Z. Chen ◽  
Q. Li

ABSTRACTStructurally integrated optical fiber sensors form the basis for smart structure technology. Over the past decade a variety of sensor configurations have been developed for measurement of strains and deformations in structures. Strains and deformations alter the refractive index and the geometry of the optical fiber material. These changes perturb the intensity, phase, and polarization of the light-wave propagating along the probing fiber. The optical perturbations are detected for the determination of strain. The research presented here describes the development of a new optical fiber sensor system for measurement of structural strains based on white light interferometry. An optical switch provides for multiplexing of strain signals from various locations in the structure. Redundant Bragg grating type fiber optic sensors as well as strain gauges were employed for comparison and verification of strain signals as measured by the new system. The system provides capability for distributed sensing of strains in large structures.


2012 ◽  
Vol 30 (14) ◽  
pp. 2281-2288 ◽  
Author(s):  
Cheng Ma ◽  
Bo Dong ◽  
E. M. Lally ◽  
Anbo Wang

2016 ◽  
Vol 364 ◽  
pp. 55-59 ◽  
Author(s):  
Xiangping Ning ◽  
Chun Liu Zhao ◽  
Jingyi Yang ◽  
Chi Chiu Chan

Sign in / Sign up

Export Citation Format

Share Document