Classification of Hyperspectral Data over Urban Areas Based on Extended Morphological Profile with Partial Reconstruction

Author(s):  
Wenzhi Liao ◽  
Rik Bellens ◽  
Aleksandra Pižurica ◽  
Wilfried Philips ◽  
Youguo Pi
1998 ◽  
Author(s):  
Bing Zhang ◽  
Jiangui Liu ◽  
Xiangjun Wang ◽  
Changshan Wu

Author(s):  
B. Abbasi ◽  
H. Arefi ◽  
B. Bigdeli ◽  
M. Motagh ◽  
S. Roessner

Limitations and deficiencies of different remote sensing sensors in extraction of different objects caused fusion of data from different sensors to become more widespread for improving classification results. Using a variety of data which are provided from different sensors, increase the spatial and the spectral accuracy. Lidar (Light Detection and Ranging) data fused together with hyperspectral images (HSI) provide rich data for classification of the surface objects. Lidar data representing high quality geometric information plays a key role for segmentation and classification of elevated features such as buildings and trees. On the other hand, hyperspectral data containing high spectral resolution would support high distinction between the objects having different spectral information such as soil, water, and grass. This paper presents a fusion methodology on Lidar and hyperspectral data for improving classification accuracy in urban areas. In first step, we applied feature extraction strategies on each data separately. In this step, texture features based on GLCM (Grey Level Co-occurrence Matrix) from Lidar data and PCA (Principal Component Analysis) and MNF (Minimum Noise Fraction) based dimension reduction methods for HSI are generated. In second step, a Maximum Likelihood (ML) based classification method is applied on each feature spaces. Finally, a fusion method is applied to fuse the results of classification. A co-registered hyperspectral and Lidar data from University of Houston was utilized to examine the result of the proposed method. This data contains nine classes: Building, Tree, Grass, Soil, Water, Road, Parking, Tennis Court and Running Track. Experimental investigation proves the improvement of classification accuracy to 88%.


Author(s):  
R. Ilehag ◽  
M. Weinmann ◽  
A. Schenk ◽  
S. Keller ◽  
B. Jutzi ◽  
...  

Classification of materials found in urban areas using remote sensing, in particular with hyperspectral data, has in recent times increased in importance. This study is conducting classification of materials found on building using hyperspectral data, by using an existing spectral library and collected data acquired with a spectrometer. Two commonly used classification algorithms, Support Vector Machine and Random Forest, were used to classify the materials. In addition, dimensionality reduction and band selection were performed to determine if selected parts of the full spectral domain, such as the Short Wave Infra-Red domain, are sufficient to classify the different materials. We achieved the best classification results for the two datasets using dimensionality reduction based on a Principal Component Analysis in combination with a Random Forest classification. Classification using the full domain achieved the best results, followed by the Short Wave Infra-Red domain.


2019 ◽  
Author(s):  
M Maktabi ◽  
H Köhler ◽  
R Thieme ◽  
JP Takoh ◽  
SM Rabe ◽  
...  

Author(s):  
Herman Herman ◽  
Demi Adidrana ◽  
Nico Surantha ◽  
Suharjito Suharjito

The human population significantly increases in crowded urban areas. It causes a reduction of available farming land. Therefore, a landless planting method is needed to supply the food for society. Hydroponics is one of the solutions for gardening methods without using soil. It uses nutrient-enriched mineral water as a nutrition solution for plant growth. Traditionally, hydroponic farming is conducted manually by monitoring the nutrition such as acidity or basicity (pH), the value of Total Dissolved Solids (TDS), Electrical Conductivity (EC), and nutrient temperature. In this research, the researchers propose a system that measures pH, TDS, and nutrient temperature values in the Nutrient Film Technique (NFT) technique using a couple of sensors. The researchers use lettuce as an object of experiment and apply the k-Nearest Neighbor (k-NN) algorithm to predict the classification of nutrient conditions. The result of prediction is used to provide a command to the microcontroller to turn on or off the nutrition controller actuators simultaneously at a time. The experiment result shows that the proposed k-NN algorithm achieves 93.3% accuracy when it is k = 5.


Sign in / Sign up

Export Citation Format

Share Document