Strategies to Control Particulate Emissions of Gasoline Direct Injection Engines

Author(s):  
Oliver Berkemeier ◽  
Klemens Grieser ◽  
Kay Hohenboeken ◽  
Evangelos Karvounis ◽  
K. Moritz Springer
2013 ◽  
Vol 726-731 ◽  
pp. 2351-2354
Author(s):  
Guang Yang Liu ◽  
Yu Liu ◽  
Jian Xi Pang ◽  
Yan Qin

The objective of this research is to introduce the main gasoline direct injection vehicle particulate emissions characteristics researches in the world. Many investigations of particulate sizing and number count from gasoline direct injection (GDI) vehicles at different driving cycles were performed. Lots of particulate emissions are measured for FTP-75, NEDC, HWTET, SC03, and US06 cycles and these cycles can reflect different aspects of the particulate emissions. In some papers, both engine-out and tailpipe emissions were measured. Some investigation showed high sensitivity of the particulate number or size distribution to changes with the engine control parameters including A/F, ignition timing, EOI and so on.On the whole, the particulate number during different Driving Cycle is shown along with further analysis of the transient particulate emissions. The cold start process obviously affects particulate formation. Even beyond cold start, the particulate number emissions decrease as the test progresses. The results coming from the particulate measurement system sampling directly from the exhaust showed very rapid increases in particulate emissions during engine transients.


2020 ◽  
pp. 146808742097389
Author(s):  
Fahad M Alzahrani ◽  
Mohammad Fatouraie ◽  
Volker Sick

Unevaporated fuel films forming on the fuel injector tip of gasoline direct-injection engines burn in a diffusion flame at the time of spark, producing particulates and at some operating conditions, these films have been identified as the dominating source of particulate emissions. This work developed an analytical model for liquid film evaporation on the injector tip, that is, injector tip drying, for the mitigation of injector tip wetting and the resulting particulate emissions. The model explains theoretically how fuel films on the injector tip evaporate with time from the end of injection to the spark. The model takes into consideration engine operating conditions, including engine load and speed, tip and fuel temperatures, gas temperature and pressure, and fuel properties. The model explains the observed trends in particulate number (PN) emissions due to injector tip wetting. Engine experiments were used to validate the model by correlating the predicted film mass at the time of spark to measurements of PN emissions at different conditions. A tip drying time constant was also defined and was found to correlate well with the measured PN for all conditions tested. This time constant is a deterministic factor for mitigating tip wetting. In general, the results indicate that the liquid film evaporation on the injector tip follows a first order, asymptotic behavior. Furthermore, the tip drying physics causes the observed increasing and decreasing non-linear trends in PN emissions with the engine load and the available time for tip drying, respectively. Additionally, the liquid film evaporation on the injector tip is highly sensitive to most of the injector initial and boundary conditions, including the initial film mass after the end of injection, the wetted surface area, the available time for tip drying and the injector tip temperature. The initial film temperature has the least effect on film mass evaporation.


2020 ◽  
pp. 146808742091605 ◽  
Author(s):  
M Medina ◽  
FM Alzahrani ◽  
M Fatouraie ◽  
MS Wooldridge ◽  
V Sick

Gasoline fuel deposited on the fuel injector tip has been identified as a significant source of particulate emissions at some operating conditions of gasoline direct-injection engines. This work proposes simplified conceptual understanding for mechanisms controlling injector tip wetting and tip drying in gasoline direct-injection engines. The objective of the work was to identify which physical mechanisms of tip wetting and drying were most important for the operating conditions and hardware considered and to relate the mechanisms to measurements of particulate number emissions. Trends for each of the physical processes were evaluated as a function of engine operating conditions such as engine speed, start of injection timing, engine load, fuel rail pressure, and coolant temperature. The effects of fuel injector geometries on the tip wetting and drying mechanisms were also considered. Several mechanisms of injector tip wetting were represented with the conceptual understanding including wide plume wetting, vortex droplet wetting, fuel dribble wetting, and fuel condensation wetting. The main tip drying mechanism considered was single-phase evaporation. Using the conceptual understanding for tip wetting and drying mechanisms that were created in this work, the effects of engine operating conditions and fuel injector geometries on the mechanisms were compared with experimental results for particulate number. The results indicate that measured particulate number was increased by increasing injected fuel mass. Increasing injected fuel mass was suspected to increase tip wetting via wide plume wetting and vortex droplet wetting mechanisms. Particulate number was also observed to increase with hole length. Longer hole length was suspected to result in higher tip wetting via vortex droplet and fuel dribble wetting mechanisms. Longer timescale was found to decrease particulate number emissions. Lower speeds and early injection timings increased the timescale. Similarly, higher coolant temperature decreased particulate number. The coolant temperature influenced tip temperature resulting in higher tip drying.


MTZ worldwide ◽  
2018 ◽  
Vol 79 (7-8) ◽  
pp. 50-55 ◽  
Author(s):  
Felix Eitel ◽  
Jörg Schäfer ◽  
Achim Königstein ◽  
Christof Heeger

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Eiji Ishii ◽  
Yoshihito Yasukawa ◽  
Kazuki Yoshimura ◽  
Kiyotaka Ogura

The generation of particulate matter (PM) is one problem with gasoline direct-injection engines. PM is generated in high-density regions of fuel. Uniform air/fuel mixtures and short fuel-spray durations with multiple injections are effective in enabling the valves of fuel injectors not to wobble and dribble. We previously studied what effects the opening and closing of valves had on fuel spray behavior and found that valve motions in the opening and closing directions affected spray behavior and generated coarse droplets during the end-of-injection. We focused on the effects of valve wobbling on fuel spray behavior in this study, especially on the behavior during the end-of-injection. The effects of wobbling on fuel spray with full valve strokes were first studied, and we found that simulated spray behaviors agreed well with the measured ones. We also studied the effects on fuel dribble during end-of-injection. When a valve wobbled from left to right, the fuel dribble decreased in comparison with a case without wobbling. When a valve wobbled from the front to the rear, however, fuel dribble increased. Surface tension significantly affected fuel dribble, especially in forming low-speed liquid columns and coarse droplets. Fuel dribble was simulated while changing the wetting angle on walls from 60 to 5 deg. We found that the appearance of coarse droplets in sprays decreased during the end-of-injection by changing the wetting angles from 60 to 5 deg.


Sign in / Sign up

Export Citation Format

Share Document