The Research Progress of Particulate Emissions from Vehicles with Gasoline Direct Injection Engines

2013 ◽  
Vol 726-731 ◽  
pp. 2351-2354
Author(s):  
Guang Yang Liu ◽  
Yu Liu ◽  
Jian Xi Pang ◽  
Yan Qin

The objective of this research is to introduce the main gasoline direct injection vehicle particulate emissions characteristics researches in the world. Many investigations of particulate sizing and number count from gasoline direct injection (GDI) vehicles at different driving cycles were performed. Lots of particulate emissions are measured for FTP-75, NEDC, HWTET, SC03, and US06 cycles and these cycles can reflect different aspects of the particulate emissions. In some papers, both engine-out and tailpipe emissions were measured. Some investigation showed high sensitivity of the particulate number or size distribution to changes with the engine control parameters including A/F, ignition timing, EOI and so on.On the whole, the particulate number during different Driving Cycle is shown along with further analysis of the transient particulate emissions. The cold start process obviously affects particulate formation. Even beyond cold start, the particulate number emissions decrease as the test progresses. The results coming from the particulate measurement system sampling directly from the exhaust showed very rapid increases in particulate emissions during engine transients.

2020 ◽  
pp. 146808742091605 ◽  
Author(s):  
M Medina ◽  
FM Alzahrani ◽  
M Fatouraie ◽  
MS Wooldridge ◽  
V Sick

Gasoline fuel deposited on the fuel injector tip has been identified as a significant source of particulate emissions at some operating conditions of gasoline direct-injection engines. This work proposes simplified conceptual understanding for mechanisms controlling injector tip wetting and tip drying in gasoline direct-injection engines. The objective of the work was to identify which physical mechanisms of tip wetting and drying were most important for the operating conditions and hardware considered and to relate the mechanisms to measurements of particulate number emissions. Trends for each of the physical processes were evaluated as a function of engine operating conditions such as engine speed, start of injection timing, engine load, fuel rail pressure, and coolant temperature. The effects of fuel injector geometries on the tip wetting and drying mechanisms were also considered. Several mechanisms of injector tip wetting were represented with the conceptual understanding including wide plume wetting, vortex droplet wetting, fuel dribble wetting, and fuel condensation wetting. The main tip drying mechanism considered was single-phase evaporation. Using the conceptual understanding for tip wetting and drying mechanisms that were created in this work, the effects of engine operating conditions and fuel injector geometries on the mechanisms were compared with experimental results for particulate number. The results indicate that measured particulate number was increased by increasing injected fuel mass. Increasing injected fuel mass was suspected to increase tip wetting via wide plume wetting and vortex droplet wetting mechanisms. Particulate number was also observed to increase with hole length. Longer hole length was suspected to result in higher tip wetting via vortex droplet and fuel dribble wetting mechanisms. Longer timescale was found to decrease particulate number emissions. Lower speeds and early injection timings increased the timescale. Similarly, higher coolant temperature decreased particulate number. The coolant temperature influenced tip temperature resulting in higher tip drying.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 111 ◽  
Author(s):  
Yaowei Zhao ◽  
Xinghu Li ◽  
Shouxin Hu ◽  
Chenfei Ma

The purpose of this experimental study was to evaluate the range of particulate mass (PM) and particulate number (PN) results from gasoline direct injection (GDI) vehicles by using four test fuels with a range of particulate matter index (PMI) from 1.38 to 2.39 and particulate evaluation index (PEI) from 0.89 to 1.92. The properties of four test fuels were analyzed with detailed hydrocarbon analysis (DHA). Two passenger cars with a GDI engine were tested with four test fuels by conducting the China 6 test procedure, which is equivalent to the worldwide harmonized light-duty vehicle test procedure (WLTP). When the fuels could meet the China 6 primary reference fuel standard with PMI from 1.38 to 2.04 and PEI from 0.89 to 1.59, the PM variation of Vehicle B was from 1.94 mg/km to 3.32 mg/km and of Vehicle A was from 2.55 mg/km to 4.15 mg/km, respectively. In addition, the PN variation of Vehicle B was from 1.57 × 1012 #/km to 3.38 × 1012 #/km and of Vehicle A was from 3.02 × 1012 #/km to 4.80 × 1012 #/km. It was noted that the two different cars had a unique response and sensitivity by using the different fuels, but PMI and PEI did trend with both the PM and the PN response. All PM and PN results from the two cars had an excellent correlation R2 > 0.94 with PMI and R2 > 0.90 with PEI. Therefore, PMI/PEI would be the appropriate specification for sooting tendency in reference fuel standards of emission regulations.


2020 ◽  
pp. 146808742097389
Author(s):  
Fahad M Alzahrani ◽  
Mohammad Fatouraie ◽  
Volker Sick

Unevaporated fuel films forming on the fuel injector tip of gasoline direct-injection engines burn in a diffusion flame at the time of spark, producing particulates and at some operating conditions, these films have been identified as the dominating source of particulate emissions. This work developed an analytical model for liquid film evaporation on the injector tip, that is, injector tip drying, for the mitigation of injector tip wetting and the resulting particulate emissions. The model explains theoretically how fuel films on the injector tip evaporate with time from the end of injection to the spark. The model takes into consideration engine operating conditions, including engine load and speed, tip and fuel temperatures, gas temperature and pressure, and fuel properties. The model explains the observed trends in particulate number (PN) emissions due to injector tip wetting. Engine experiments were used to validate the model by correlating the predicted film mass at the time of spark to measurements of PN emissions at different conditions. A tip drying time constant was also defined and was found to correlate well with the measured PN for all conditions tested. This time constant is a deterministic factor for mitigating tip wetting. In general, the results indicate that the liquid film evaporation on the injector tip follows a first order, asymptotic behavior. Furthermore, the tip drying physics causes the observed increasing and decreasing non-linear trends in PN emissions with the engine load and the available time for tip drying, respectively. Additionally, the liquid film evaporation on the injector tip is highly sensitive to most of the injector initial and boundary conditions, including the initial film mass after the end of injection, the wetted surface area, the available time for tip drying and the injector tip temperature. The initial film temperature has the least effect on film mass evaporation.


Sign in / Sign up

Export Citation Format

Share Document