Primary Quality Factor Estimation in Double Compressed JPEG Images Using Quantization Error

Author(s):  
Yang Shuang ◽  
Fang Zhen
Author(s):  
Jinwei Wang ◽  
Wei Huang ◽  
Xiangyang Luo ◽  
Yun-Qing Shi ◽  
Sunil Kr. Jha

Due to the popularity of JPEG format images in recent years, JPEG images will inevitably involve image editing operation. Thus, some tramped images will leave tracks of Non-aligned double JPEG ( NA-DJPEG ) compression. By detecting the presence of NA-DJPEG compression, one can verify whether a given JPEG image has been tampered with. However, only few methods can identify NA-DJPEG compressed images in the case that the primary quality factor is greater than the secondary quality factor. To address this challenging task, this article proposes a novel feature extraction scheme based optimized pixel difference ( OPD ), which is a new measure for blocking artifacts. Firstly, three color channels (RGB) of a reconstructed image generated by decompressing a given JPEG color image are mapped into spherical coordinates to calculate amplitude and two angles (azimuth and zenith). Then, 16 histograms of OPD along the horizontal and vertical directions are calculated in the amplitude and two angles, respectively. Finally, a set of features formed by arranging the bin values of these histograms is used for binary classification. Experiments demonstrate the effectiveness of the proposed method, and the results show that it significantly outperforms the existing typical methods in the mentioned task.


2019 ◽  
Vol 28 (03) ◽  
pp. 1
Author(s):  
Huiling Yuan ◽  
Bo Ou ◽  
Huawei Tian

Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. N1-N12 ◽  
Author(s):  
Francisco de S. Oliveira ◽  
Jose J. S. de Figueiredo ◽  
Andrei G. Oliveira ◽  
Jörg Schleicher ◽  
Iury C. S. Araújo

Quality factor estimation and correction are necessary to compensate the seismic energy dissipated during acoustic-/elastic-wave propagation in the earth. In this process, known as [Formula: see text]-filtering in the realm of seismic processing, the main goal is to improve the resolution of the seismic signal, as well as to recover part of the energy dissipated by the anelastic attenuation. We have found a way to improve [Formula: see text]-factor estimation from seismic reflection data. Our methodology is based on the combination of the peak-frequency-shift (PFS) method and the redatuming operator. Our innovation is in the way we correct traveltimes when the medium consists of many layers. In other words, the correction of the traveltime table used in the PFS method is performed using the redatuming operator. This operation, performed iteratively, allows a more accurate estimation of the [Formula: see text] factor layer by layer. Applications to synthetic and real data (Viking Graben) reveal the feasibility of our analysis.


2019 ◽  
Vol 16 (6) ◽  
pp. 1061-1070 ◽  
Author(s):  
Rómulo Sandoval ◽  
José L Paredes ◽  
Flor A Vivas

Abstract Quality factor estimation (Q estimation) of vertical seismic profile (VSP) data are necessary for the process referred to as inverse Q-filtering, which is used, in turn, to improve the resolution of seismic signals. In general, the performances of Q estimation methods, based on the standard Fourier transform, are severely degraded in the presence of heavy-tailed distributed noise. In particular, these methods require a bandwidth detection which is difficult to estimate due to instabilities caused by outliers or gross errors, leading to an incorrect Q estimation. In this paper, an improvement of the Q-factor estimation based on the peak frequency shift method is proposed, where the signal spectrum is obtained using a robust transform algorithm. More precisely, the robust transform method assumes that the perturbations that contaminate the signal of interest can be characterized as random samples following a zero-mean Laplacian distribution, leading to the weighted median as the optimal operator for determining each transform coefficient. The proposed method is validated on synthetic datasets using different levels of noise and its performance is compared to those yielded by various methods based on the standard Fourier transform. Furthermore, a non-Gaussianity test is performed in order to characterize the noise distribution in real data. From the non-Gaussianity test, it can be observed that the underlying noise is better characterized using a Laplacian statistical model, and therefore, the proposed method is a suitable approach for computing the Q factor. Finally, the proposed methodology is applied to estimate the Q factors of real VSP data.


Sign in / Sign up

Export Citation Format

Share Document