Linear Time Approximation for Dominating Sets and Independent Dominating Sets in Unit Disk Graphs

Author(s):  
Guilherme D. da Fonseca ◽  
Celina M. H. de Figueiredo ◽  
Vinícius G. P. de Sá ◽  
Raphael Machado
Author(s):  
Guilherme D. da Fonseca ◽  
Vinícius G. Pereira de Sá ◽  
Celina M. H. de Figueiredo

2006 ◽  
Vol 352 (1-3) ◽  
pp. 1-7 ◽  
Author(s):  
Weili Wu ◽  
Hongwei Du ◽  
Xiaohua Jia ◽  
Yingshu Li ◽  
Scott C.-H. Huang

2011 ◽  
Vol 412 (3) ◽  
pp. 198-208 ◽  
Author(s):  
Feng Zou ◽  
Yuexuan Wang ◽  
Xiao-Hua Xu ◽  
Xianyue Li ◽  
Hongwei Du ◽  
...  

2017 ◽  
Vol 27 (04) ◽  
pp. 255-276 ◽  
Author(s):  
Guilherme D. da Fonseca ◽  
Vinícius Gusmão Pereira de Sá ◽  
Celina Miraglia Herrera de Figueiredo

Numerous approximation algorithms for problems on unit disk graphs have been proposed in the literature, exhibiting a sharp trade-off between running times and approximation ratios. We introduce a variation of the known shifting strategy that allows us to obtain linear-time constant-factor approximation algorithms for such problems. To illustrate the applicability of the proposed variation, we obtain results for three well-known optimization problems. Among such results, the proposed method yields linear-time [Formula: see text]-approximations for the maximum-weight independent set and the minimum dominating set of unit disk graphs, thus bringing significant performance improvements when compared to previous algorithms that achieve the same approximation ratios. Finally, we use axis-aligned rectangles to illustrate that the same method may be used to derive linear-time approximations for problems on other geometric intersection graph classes.


2014 ◽  
Vol 540-541 ◽  
pp. 70-81 ◽  
Author(s):  
Guilherme D. da Fonseca ◽  
Celina M.H. de Figueiredo ◽  
Vinícius G. Pereira de Sá ◽  
Raphael C.S. Machado

Sign in / Sign up

Export Citation Format

Share Document