maximal independent sets
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 16)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 68 (5) ◽  
pp. 1-30
Author(s):  
Alkida Balliu ◽  
Sebastian Brandt ◽  
Juho Hirvonen ◽  
Dennis Olivetti ◽  
Mikaël Rabie ◽  
...  

There are distributed graph algorithms for finding maximal matchings and maximal independent sets in O ( Δ + log * n ) communication rounds; here, n is the number of nodes and Δ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on n is optimal: These problems cannot be solved in o (log * n ) rounds even if Δ = 2. However, the dependency on Δ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that any algorithm that finds a maximal matching or maximal independent set with probability at least 1-1/ n requires Ω (min { Δ , log log n / log log log n }) rounds in the LOCAL model of distributed computing. As a corollary, it follows that any deterministic algorithm that finds a maximal matching or maximal independent set requires Ω (min { Δ , log n / log log n }) rounds; this is an improvement over prior lower bounds also as a function of  n .


2021 ◽  
Vol 23 (10) ◽  
pp. 157-160
Author(s):  
L. Sathikala ◽  

Abstract- In the study of domination in graphs, relationships between the concepts of maximal independent sets, minimal dominating sets and maximal irredundant sets are used to establish what is known as domination chain of parameters. 0 ir(G)  (G)  i(G)   (G)  (G)  IR(G) In this paper, starting from the concept of edge cover, six graph theoretic parameters are introduced which obey a chain of inequalities, called as the edge covering chain of the graph G


Author(s):  
Montauban Moreira de Oliveira Jr ◽  
Jean-Guillaume Eon

According to Löwenstein's rule, Al–O–Al bridges are forbidden in the aluminosilicate framework of zeolites. A graph-theoretical interpretation of the rule, based on the concept of independent sets, was proposed earlier. It was shown that one can apply the vector method to the associated periodic net and define a maximal Al/(Al+Si) ratio for any aluminosilicate framework following the rule; this ratio was called the independence ratio of the net. According to this method, the determination of the independence ratio of a periodic net requires finding a subgroup of the translation group of the net for which the quotient graph and a fundamental transversal have the same independence ratio. This article and a companion paper deal with practical issues regarding the calculation of the independence ratio of mainly 2-periodic nets and the determination of site distributions realizing this ratio. The first paper describes a calculation technique based on propositional calculus and introduces a multivariate polynomial, called the independence polynomial. This polynomial can be calculated in an automatic way and provides the list of all maximal independent sets of the graph, hence also the value of its independence ratio. Some properties of this polynomial are discussed; the independence polynomials of some simple graphs, such as short paths or cycles, are determined as examples of calculation techniques. The method is also applied to the determination of the independence ratio of the 2-periodic net dhc.


Author(s):  
Tran Nam Trung

In this paper, we give a lower bound of the number of maximal independent sets in a graph [Formula: see text] in terms of the Castelnuovo–Mumford regularity of its edge ideal. We also find two classes of graphs achieving this minimum value.


2021 ◽  
Vol 32 (01) ◽  
pp. 93-114
Author(s):  
Vadim E. Levit ◽  
David Tankus

A graph [Formula: see text] is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function [Formula: see text] is defined on its vertices. Then [Formula: see text] is [Formula: see text]well-covered if all maximal independent sets are of the same weight. For every graph [Formula: see text], the set of weight functions [Formula: see text] such that [Formula: see text] is [Formula: see text]-well-covered is a vector space, denoted as WCW(G). Deciding whether an input graph [Formula: see text] is well-covered is co-NP-complete. Therefore, finding WCW(G) is co-NP-hard. A generating subgraph of a graph [Formula: see text] is an induced complete bipartite subgraph [Formula: see text] of [Formula: see text] on vertex sets of bipartition [Formula: see text] and [Formula: see text], such that each of [Formula: see text] and [Formula: see text] is a maximal independent set of [Formula: see text], for some independent set [Formula: see text]. If [Formula: see text] is generating, then [Formula: see text] for every weight function [Formula: see text]. Therefore, generating subgraphs play an important role in finding WCW(G). The decision problem whether a subgraph of an input graph is generating is known to be NP-complete. In this article we prove NP- completeness of the problem for graphs without cycles of length 3 and 5, and for bipartite graphs with girth at least 6. On the other hand, we supply polynomial algorithms for recognizing generating subgraphs and finding WCW(G), when the input graph is bipartite without cycles of length 6. We also present a polynomial algorithm which finds WCW(G) when [Formula: see text] does not contain cycles of lengths 3, 4, 5, and 7.


2020 ◽  
Vol 14 (3) ◽  
pp. 359-371 ◽  
Author(s):  
Megha Chhabra ◽  
Manoj Kumar Shukla ◽  
Kiran Kumar Ravulakollu

Segmentation and classification of latent fingerprints is a young challenging area of research. Latent fingerprints are unintentional fingermarks. These marks are ridge patterns left at crime scenes, lifted with latent or unclear view of fingermarks, making it difficult to find the guilty party. The segmentation of lifted images of such finger impressions comes with some unique challenges in domain such as poor quality images, incomplete ridge patterns, overlapping prints etc. The classification of poorly acquired data can be improved with image pre-processing, feeding all or optimal set of features extracted to suitable classifiers etc. Our classification system proposes two main steps. First, various effective extracted features are compartmentalised into maximal independent sets with high correlation value, Second, conventional supervised technique based binary classifiers are combined into a cascade/stack of classifiers. These classifiers are fed with all or optimal feature set(s) for binary classification of fingermarks as ridge patterns from non-ridge background. The experimentation shows improvement in accuracy rate on IIIT-D database with supervised algorithms.


10.37236/8530 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Jeff Kahn ◽  
Jinyoung Park

Answering questions of Y. Rabinovich, we prove "stability" versions of upper bounds on maximal independent set counts in graphs under various restrictions. Roughly these say that being close to the maximum implies existence of a large induced matching or triangle matching (depending on assumptions). A mild strengthening of one of these results is a key ingredient in a proof (to appear elsewhere) of a conjecture of L. Ilinca and the first author giving asymptotics for the number of maximal independent sets in the graph of the Hamming cube.


2020 ◽  
Vol 30 (1) ◽  
pp. 53-67 ◽  
Author(s):  
Dmitriy S. Taletskii ◽  
Dmitriy S. Malyshev

AbstractFor any n, in the set of n-vertex trees such that any two leaves have no common adjacent vertex, we describe the trees with the smallest number of maximal independent sets.


Sign in / Sign up

Export Citation Format

Share Document