Identifying Overlapping Communities and Their Leading Members in Social Networks

Author(s):  
Camilo Palazuelos ◽  
Marta Zorrilla

:In recent time, online social networks like, Facebook, Twitter, and other platforms, provide functionality that allows a chunk of information migrates from one user to another over a network. Almost all the actual networks exhibit the concept of community structure. Indeed overlapping communities are very common in a complex network such as online social networks since nodes could belong to multiple communities at once. The huge size of the real-world network, diversity in users profiles and, the uncertainty in their behaviors have made modeling the information diffusion in such networks to become more and more complex and tend to be less accurate. This work pays much attention on how we can accurately predicting information diffusion cascades over social networks taking into account the role played by the overlapping nodes in the diffusion process due to its belonging to more than one community. According to that, the information diffusion is modeled in communities in which these nodes have high membership for reasons that may relate to the applications such as market optimization and rumor spreading. Our experiment made on a real social data, Digg news aggregator network on 15% of overlapped nodes, using our proposed model SFA-ICBDM described in previous work. The experimental results show that the cascade model of the overlapped nodes whether represents seed or node within cascade achieves best prediction accuracy in the community which the node belongs at more


Author(s):  
S Rao Chintalapudi ◽  
H. M. Krishna Prasad M

Social network analysis is one of the emerging research areas in the modern world. Social networks can be adapted to all the sectors by using graph theory concepts such as transportation networks, collaboration networks, and biological networks and so on. The most important property of social networks is community, collection of nodes with dense connections inside and sparse connections at outside. Community detection is similar to clustering analysis and has many applications in the real-time world such as recommendation systems, target marketing and so on. Community detection algorithms are broadly classified into two categories. One is disjoint community detection algorithms and the other is overlapping community detection algorithms. This chapter reviews overlapping community detection algorithms with their strengths and limitations. To evaluate these algorithms, a popular synthetic network generator, i.e., LFR benchmark generator and the new extended quality measures are discussed in detail.


Author(s):  
Mark Goldberg ◽  
Stephen Kelley ◽  
Malik Magdon-Ismail ◽  
Konstantin Mertsalov ◽  
Al Wallace

Sign in / Sign up

Export Citation Format

Share Document