scholarly journals Modeling the Information Diffusion of Overlapped Nodes using SFA-ICBDM

:In recent time, online social networks like, Facebook, Twitter, and other platforms, provide functionality that allows a chunk of information migrates from one user to another over a network. Almost all the actual networks exhibit the concept of community structure. Indeed overlapping communities are very common in a complex network such as online social networks since nodes could belong to multiple communities at once. The huge size of the real-world network, diversity in users profiles and, the uncertainty in their behaviors have made modeling the information diffusion in such networks to become more and more complex and tend to be less accurate. This work pays much attention on how we can accurately predicting information diffusion cascades over social networks taking into account the role played by the overlapping nodes in the diffusion process due to its belonging to more than one community. According to that, the information diffusion is modeled in communities in which these nodes have high membership for reasons that may relate to the applications such as market optimization and rumor spreading. Our experiment made on a real social data, Digg news aggregator network on 15% of overlapped nodes, using our proposed model SFA-ICBDM described in previous work. The experimental results show that the cascade model of the overlapped nodes whether represents seed or node within cascade achieves best prediction accuracy in the community which the node belongs at more

Author(s):  
Dmitry Zinoviev

The issue of information diffusion in small-world social networks was first systematically brought to light by Mark Granovetter in his seminal paper “The Strength of Weak Ties” in 1973 and has been an area of active academic studies in the past three decades. This chapter discusses information proliferation mechanisms in massive online social networks (MOSN). In particular, the following aspects of information diffusion processes are addressed: the role and the strategic position of influential spreaders of information; the pathways in the social networks that serve as conduits for communication and information flow; mathematical models describing proliferation processes; short-term and long-term dynamics of information diffusion, and secrecy of information diffusion.


2020 ◽  
Vol 34 (10) ◽  
pp. 13730-13731
Author(s):  
Ece C. Mutlu

This doctoral consortium presents an overview of my anticipated PhD dissertation which focuses on employing quantum Bayesian networks for social learning. The project, mainly, aims to expand the use of current quantum probabilistic models in human decision-making from two agents to multi-agent systems. First, I cultivate the classical Bayesian networks which are used to understand information diffusion through human interaction on online social networks (OSNs) by taking into account the relevance of multitude of social, psychological, behavioral and cognitive factors influencing the process of information transmission. Since quantum like models require quantum probability amplitudes, the complexity will be exponentially increased with increasing uncertainty in the complex system. Therefore, the research will be followed by a study on optimization of heuristics. Here, I suggest to use an belief entropy based heuristic approach. This research is an interdisciplinary research which is related with the branches of complex systems, quantum physics, network science, information theory, cognitive science and mathematics. Therefore, findings can contribute significantly to the areas related mainly with social learning behavior of people, and also to the aforementioned branches of complex systems. In addition, understanding the interactions in complex systems might be more viable via the findings of this research since probabilistic approaches are not only used for predictive purposes but also for explanatory aims.


Author(s):  
Ammar Alnahhas ◽  
Bassel Alkhatib

As the data on the online social networks is getting larger, it is important to build personalized recommendation systems that recommend suitable content to users, there has been much research in this field that uses conceptual representations of text to match user models with best content. This article presents a novel method to build a user model that depends on conceptual representation of text by using ConceptNet concepts that exceed the named entities to include the common-sense meaning of words and phrases. The model includes the contextual information of concepts as well, the authors also show a novel method to exploit the semantic relations of the knowledge base to extend user models, the experiment shows that the proposed model and associated recommendation algorithms outperform all previous methods as a detailed comparison shows in this article.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yuan Xu ◽  
Renjie Mei ◽  
Yujie Yang ◽  
Zhengmin Kong

It is of great practical significance to figure out the propagation mechanism and outbreak condition of rumor spreading on online social networks. In our paper, we propose a multi-state reinforcement diffusion model for rumor spreading, in which the reinforcement mechanism is introduced to depict individual willingness towards rumor spreading. Multiple intermediate states are introduced to characterize the process that an individual's diffusion willingness is enhanced step by step. We study the rumor spreading process with the proposed reinforcement diffusion mechanism on two typical networks. The outbreak thresholds of rumor spreading on both two networks are obtained. Numerical simulations and Monte Carlo simulations are conducted to illustrate the spreading process and verify the correctness of theoretical results. We believe that our work will shed some light on understanding how human sociality affects the rumor spreading on online social networks.


Sign in / Sign up

Export Citation Format

Share Document