A cooperative game framework for detecting overlapping communities in social networks

2018 ◽  
Vol 491 ◽  
pp. 498-515 ◽  
Author(s):  
Annapurna Jonnalagadda ◽  
Lakshmanan Kuppusamy
2021 ◽  
Vol 288 (1944) ◽  
pp. 20202951
Author(s):  
Gladys Barragan-Jason ◽  
Maxime Cauchoix ◽  
Anne Regnier ◽  
Marie Bourjade ◽  
Astrid Hopfensitz ◽  
...  

Cooperation plays a key role in the development of advanced societies and can be stabilized through shared genes (kinship) or reciprocation. In humans, cooperation among kin occurs more readily than cooperation among non-kin. In many organisms, cooperation can shift with age (e.g. helpers at the nest); however, little is known about developmental shifts between kin and non-kin cooperation in humans. Using a cooperative game, we show that 3- to 10-year-old French schoolchildren cooperated less successfully with siblings than with non-kin children, whether or not non-kin partners were friends. Furthermore, children with larger social networks cooperated better and the perception of friendship among non-friends improved after cooperating. These results contrast with the well-established preference for kin cooperation among adults and indicate that non-kin cooperation in humans might serve to forge and extend non-kin social relationships during middle childhood and create opportunities for future collaboration beyond kin. Our results suggest that the current view of cooperation in humans may only apply to adults and that future studies should focus on how and why cooperation with different classes of partners might change during development in humans across cultures as well as other long-lived organisms.


:In recent time, online social networks like, Facebook, Twitter, and other platforms, provide functionality that allows a chunk of information migrates from one user to another over a network. Almost all the actual networks exhibit the concept of community structure. Indeed overlapping communities are very common in a complex network such as online social networks since nodes could belong to multiple communities at once. The huge size of the real-world network, diversity in users profiles and, the uncertainty in their behaviors have made modeling the information diffusion in such networks to become more and more complex and tend to be less accurate. This work pays much attention on how we can accurately predicting information diffusion cascades over social networks taking into account the role played by the overlapping nodes in the diffusion process due to its belonging to more than one community. According to that, the information diffusion is modeled in communities in which these nodes have high membership for reasons that may relate to the applications such as market optimization and rumor spreading. Our experiment made on a real social data, Digg news aggregator network on 15% of overlapped nodes, using our proposed model SFA-ICBDM described in previous work. The experimental results show that the cascade model of the overlapped nodes whether represents seed or node within cascade achieves best prediction accuracy in the community which the node belongs at more


Sign in / Sign up

Export Citation Format

Share Document