Spatial Prediction of Soil Organic Matter Using Bayesian Maximum Entropy with Histogram Soft Data

Author(s):  
Chutian Zhang ◽  
Yong Yang
2007 ◽  
Vol 53 (3) ◽  
pp. 289-299 ◽  
Author(s):  
Yusuke Takata ◽  
Shinya Funakawa ◽  
Kanat Akshalov ◽  
Norio Ishida ◽  
Takashi Kosaki

Geoderma ◽  
2012 ◽  
Vol 171-172 ◽  
pp. 35-43 ◽  
Author(s):  
Shiwen Zhang ◽  
Yuanfang Huang ◽  
Chongyang Shen ◽  
Huichun Ye ◽  
Yichun Du

2022 ◽  
Author(s):  
Xumeng Zhang ◽  
Wuping Zhang ◽  
Mingjing Huang ◽  
Li Gao ◽  
Lei Qiao ◽  
...  

Abstract Dynamic changes in soil organic matter content affects the sustainable supply of soil water and fertilizer and impacts the stability of soil ecological function. Understanding the spatial distribution characteristics of soil organic matter will help deepen our understanding of the differences in soil organic matter content, soil formation law; such understanding would be useful for rational land use planning. Taking terrain data, meteorological data, and remote sensing data as auxiliary variables and the ordinary Kriging (OK) method as a control, this study compares the spatial prediction accuracies and mapping effects of various models (MLR, RK, GWR, GWRK, MGWR, and MGWRK) on soil organic matter. Our results show that the spatial distribution trend of soil organic matter predicted by each model is similar, but the prediction of composite models can reflect more mapping details than that of unitary models. The OK method can provide better support for spatial prediction when the sampling points are dense; however, the local models are superior in dealing with spatial non-stationarity. Notably, the MGWR model is superior to the GWR model, but the MGWRK model is inferior to the GWRK model. As a new method, the prediction accuracy of MGWRK reached 47.72% for the OK and RK methods and 40.08% for the GWRK method. The GWRK method achieved a better prediction accuracy. The influence mechanism of soil organic matter is complex, but the MGWR model more clearly reveals the complex nonlinear relationship between soil organic matter content and factors influencing it. This research can provide reference methods and mapping technical support to improve the spatial prediction accuracy of soil organic matter.


2020 ◽  
Vol 12 (23) ◽  
pp. 3916
Author(s):  
Leran Han ◽  
Chunmei Wang ◽  
Qiyue Liu ◽  
Gengke Wang ◽  
Tao Yu ◽  
...  

This paper proposes a combined approach wherein the optical, near-infrared, and thermal infrared data from the Landsat 8 satellite and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global digital elevation model (GDEM) data are fused for soil moisture mapping under sparse sampling conditions, based on the Bayesian maximum entropy (BME) framework. The study was conducted in three stages. First, based on the maximum entropy principle of the information theory, a Lagrange multiplier was introduced to construct general knowledge, representing prior knowledge. Second, a principal component analysis (PCA) was conducted to extract three principal components from the multi-source data mentioned above, and an innovative and operable discrete probability method based on a fuzzy probability matrix was used to approximate the probability relationship. Thereafter, soft data were generated on the basis of the weight coefficients and coordinates of the soft data points. Finally, by combining the general knowledge with the prior information, hard data (HD), and soft data (SD), we completed the soil moisture mapping based on the Bayesian conditioning rule. To verify the feasibility of the combined approach, the ordinary kriging (OK) method was taken as a comparison. The results confirmed the superiority of the soil moisture map obtained using the BME framework. The map revealed more detailed information, and the accuracies of the quantitative indicators were higher compared with that for the OK method (the root mean squared error (RMSE) = 0.0423 cm3/cm3, mean absolute error (MAE) = 0.0399 cm3/cm3, and Pearson correlation coefficient (PCC) = 0.7846), while largely overcoming the overestimation issue in the range of low values and the underestimation issue in the range of high values. The proposed approach effectively fused inexpensive and easily available multi-source data with uncertainties and obtained a satisfactory mapping accuracy, thus demonstrating the potential of the BME framework for soil moisture mapping using multi-source data.


Sign in / Sign up

Export Citation Format

Share Document