A numerical investigation of vortex-induced vibration (VIV) of a pair of identical circular cylinders placed side by side in an uniform flow has been performed. One of the cylinder is elastically mounted and only vibrates in the transverse direction, while its counterpart remains stationary. When two cylinders are placed sufficiently close to each other, a flip-flopping phenomenon can be an additional time-dependent disturbance in the range of 0.2 ≲ g* ≲ 1.2. This phenomenon was well-reported by the experimental work of Bearman and Wadcock [1] in a side-by-side circular cylinder arrangement, in which the gap flow biased toward one of the cylinders and switched the sides intermittently. Albeit one of the two cylinders is free to vibrate, this flip-flopping during VIV dynamics can still be observed. In the side-by-side arrangement, the lock-in region shrinks due to the presence of its stationary counterpart and occurs prematurely compared to that of an isolated counterpart. Similar to the tandem cylinder arrangement, in the post lock-in region, the vibration amplitude is amplified compared to the isolated counterpart. For the vibrating cylinder in the side-by-side arrangement, the biased gap flow shows a quasi-stable flow regime within the lock-in region, instead of a bi-stable regime which is reported in the stationary side-by-side arrangement. When these factors take place simultaneously, the dynamics of freely vibrating cylinder becomes complex and such a side-by-side canonical arrangement is common in offshore engineering applications, for example a floating platform operating in the side of FPSO, arrays of riser and pipelines, ships travelling in rows within close proximity and many other side-by-side operations. The chaotic fluctuation and large vibration may occur when two bluff bodies are placed closely. It often causes inevitable damages and potential risks to the offshore structures and may leads to a collision or long-term fatigue failure associated with flow-induced vibrations.