Computational Aspects of Data Transformations and Ansley’s Algorithm

Author(s):  
Paul Knottnerus
Author(s):  
Abdulkarim Magomedov ◽  
S.A. Lavrenchenko

New laconic proofs of two classical statements of combinatorics are proposed, computational aspects of binomial coefficients are considered, and examples of their application to problems of elementary mathematics are given.


1986 ◽  
Author(s):  
William C. Dass ◽  
Douglas H. Merkle

1987 ◽  
Vol 19 (5-6) ◽  
pp. 721-727 ◽  
Author(s):  
J. Pintér ◽  
L. Somlyódy

A conceptual framework is presented for optimizing the operation of regional monitoring networks which assist water quality management. The primary objective of the studied network is to determine the annual nutrient load carried into a lake by its tributaries. Following the description of the basic (single time–period, single water quality indicator) model, several extension possibilities and computational aspects are highlighted. The suggested methodology is illustrated by a numerical example, concerning the surveillance system on the tributaries of Lake Balaton (Hungary).


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ritukesh Bharali ◽  
Fredrik Larsson ◽  
Ralf Jänicke

2021 ◽  
Vol 13 (3) ◽  
pp. 408
Author(s):  
Charles Nickmilder ◽  
Anthony Tedde ◽  
Isabelle Dufrasne ◽  
Françoise Lessire ◽  
Bernard Tychon ◽  
...  

Accurate information about the available standing biomass on pastures is critical for the adequate management of grazing and its promotion to farmers. In this paper, machine learning models are developed to predict available biomass expressed as compressed sward height (CSH) from readily accessible meteorological, optical (Sentinel-2) and radar satellite data (Sentinel-1). This study assumed that combining heterogeneous data sources, data transformations and machine learning methods would improve the robustness and the accuracy of the developed models. A total of 72,795 records of CSH with a spatial positioning, collected in 2018 and 2019, were used and aggregated according to a pixel-like pattern. The resulting dataset was split into a training one with 11,625 pixellated records and an independent validation one with 4952 pixellated records. The models were trained with a 19-fold cross-validation. A wide range of performances was observed (with mean root mean square error (RMSE) of cross-validation ranging from 22.84 mm of CSH to infinite-like values), and the four best-performing models were a cubist, a glmnet, a neural network and a random forest. These models had an RMSE of independent validation lower than 20 mm of CSH at the pixel-level. To simulate the behavior of the model in a decision support system, performances at the paddock level were also studied. These were computed according to two scenarios: either the predictions were made at a sub-parcel level and then aggregated, or the data were aggregated at the parcel level and the predictions were made for these aggregated data. The results obtained in this study were more accurate than those found in the literature concerning pasture budgeting and grassland biomass evaluation. The training of the 124 models resulting from the described framework was part of the realization of a decision support system to help farmers in their daily decision making.


2021 ◽  
Vol 50 (1) ◽  
pp. 78-85
Author(s):  
Ester Livshits ◽  
Leopoldo Bertossi ◽  
Benny Kimelfeld ◽  
Moshe Sebag

Database tuples can be seen as players in the game of jointly realizing the answer to a query. Some tuples may contribute more than others to the outcome, which can be a binary value in the case of a Boolean query, a number for a numerical aggregate query, and so on. To quantify the contributions of tuples, we use the Shapley value that was introduced in cooperative game theory and has found applications in a plethora of domains. Specifically, the Shapley value of an individual tuple quantifies its contribution to the query. We investigate the applicability of the Shapley value in this setting, as well as the computational aspects of its calculation in terms of complexity, algorithms, and approximation.


Sign in / Sign up

Export Citation Format

Share Document