Molecular mechanisms regulating the myofilament response to Ca2+: Implications of mutations causal for familial hypertrophic cardiomyopathy

Author(s):  
K. A. Palmiter ◽  
R. John Solaro
2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Fang Wang ◽  
Nicolas M. Brunet ◽  
Justin R. Grubich ◽  
Ewa A. Bienkiewicz ◽  
Thomas M. Asbury ◽  
...  

Familial hypertrophic cardiomyopathy (FHC) is a disease of cardiac sarcomeres. To identify molecular mechanisms underlying FHC pathology, functional and structural differences in three FHC-related mutations in recombinantα-Tm (V95A, D175N, and E180G) were characterized using both conventional and modified in vitro motility assays and circular dichroism spectroscopy. Mutant Tm's exhibited reducedα-helical structure and increased unordered structure. When thin filaments were fully occupied by regulatory proteins, little or no motion was detected at pCa 9, and maximum speed (pCa 5) was similar for all tropomyosins. Ca2+-responsiveness of filament sliding speed was increased either by increasedpCa50(V95A), reduced cooperativityn(D175N), or both (E180G). When temperature was increased, thin filaments with E180G exhibited dysregulation at temperatures ~10°C lower, and much closer to body temperature, than WT. When HMM density was reduced, thin filaments with D175N required fewer motors to initiate sliding or achieve maximum sliding speed.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Feng lan ◽  
Andrew Lee ◽  
Ping Liang ◽  
Enrique Navarrete ◽  
Li Wang ◽  
...  

Background: Hypertrophic cardiomyopathy (HCM) is a prevalent familial cardiac disorder linked to development of heart failure, arrhythmia, and sudden cardiac death. Molecular genetic studies have demonstrated HCM is caused by mutations in genes encoding for the cardiac sarcomere. However, the pathways by which sarcomeric mutations result in myocyte hypertrophy and contractile abnormalities are not well understood. Methods: We aimed to elucidate the molecular mechanisms underlying the development of HCM through the generation of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from dermal fibroblasts of a 10 member family, five of whom carry a hereditary HCM missense mutation (Arg663His) in the MYH7 gene. Results: As compared to control iPSC-CMs derived from healthy family members, HCM iPSC-CMs exhibited enlarged cell size, increased atrial natriuretic factor (ANF) expression, nuclear translocation of nuclear factor of activated T-cells (NFAT), and aggravated contractile dysfunction in response to stimulation by β-adrenergic agonists. Interestingly, both video analysis of beating cells and whole cell patch clamping revealed arrhythmia in a significant portion of diseased iPSC-CMs at the single cell level. Ca 2+ imaging demonstrated elevated cytoplasmic Ca 2+ content and irregular transients in HCM iPSC-CMs prior to the onset of cellular hypertrophy, suggesting the HCM phenotype is triggered by dysfunction in Ca 2+ cycling. Treatment of irregular Ca 2+ homeostasis by the Ca 2+ channel blocker verapamil prevented development of cellular hypertrophy and arrhythmia. Conclusions: We hypothesize the cellular abnormalities observed in HCM iPSC-CMs are caused by deficiencies in Ca 2+ regulation. We anticipate our findings will elucidate the mechanisms underlying HCM development and identify novel targets for treatment of the disease.


2016 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Marymol Koshy ◽  
Bushra Johari ◽  
Mohd Farhan Hamdan ◽  
Mohammad Hanafiah

Hypertrophic cardiomyopathy (HCM) is a global disease affecting people of various ethnic origins and both genders. HCM is a genetic disorder with a wide range of symptoms, including the catastrophic presentation of sudden cardiac death. Proper diagnosis and treatment of this disorder can relieve symptoms and prolong life. Non-invasive imaging is essential in diagnosing HCM. We present a review to deliberate the potential use of cardiac magnetic resonance (CMR) imaging in HCM assessment and also identify the risk factors entailed with risk stratification of HCM based on Magnetic Resonance Imaging (MRI).


Sign in / Sign up

Export Citation Format

Share Document