Dual Quaternions in the Kinematics of Spatial Mechanisms

Author(s):  
Jens Wittenburg
2017 ◽  
Vol 9 (5) ◽  
Author(s):  
Xianwen Kong

Although kinematic analysis of conventional mechanisms is a well-documented fundamental issue in mechanisms and robotics, the emerging reconfigurable mechanisms and robots pose new challenges in kinematics. One of the challenges is the reconfiguration analysis of multimode mechanisms, which refers to finding all the motion modes and the transition configurations of the multimode mechanisms. Recent advances in mathematics, especially algebraic geometry and numerical algebraic geometry, make it possible to develop an efficient method for the reconfiguration analysis of reconfigurable mechanisms and robots. This paper first presents a method for formulating a set of kinematic loop equations for mechanisms using dual quaternions. Using this approach, a set of kinematic loop equations of spatial mechanisms is composed of six polynomial equations. Then the reconfiguration analysis of a novel multimode single-degree-of-freedom (1DOF) 7R spatial mechanism is dealt with by solving the set of loop equations using tools from algebraic geometry. It is found that the 7R multimode mechanism has three motion modes, including a planar 4R mode, an orthogonal Bricard 6R mode, and a plane symmetric 6R mode. Three (or one) R (revolute) joints of the 7R multimode mechanism lose their DOF in its 4R (or 6R) motion modes. Unlike the 7R multimode mechanisms in the literature, the 7R multimode mechanism presented in this paper does not have a 7R mode in which all the seven R joints can move simultaneously.


2021 ◽  
Vol 10 (7) ◽  
pp. 435
Author(s):  
Yongbo Wang ◽  
Nanshan Zheng ◽  
Zhengfu Bian

Since pairwise registration is a necessary step for the seamless fusion of point clouds from neighboring stations, a closed-form solution to planar feature-based registration of LiDAR (Light Detection and Ranging) point clouds is proposed in this paper. Based on the Plücker coordinate-based representation of linear features in three-dimensional space, a quad tuple-based representation of planar features is introduced, which makes it possible to directly determine the difference between any two planar features. Dual quaternions are employed to represent spatial transformation and operations between dual quaternions and the quad tuple-based representation of planar features are given, with which an error norm is constructed. Based on L2-norm-minimization, detailed derivations of the proposed solution are explained step by step. Two experiments were designed in which simulated data and real data were both used to verify the correctness and the feasibility of the proposed solution. With the simulated data, the calculated registration results were consistent with the pre-established parameters, which verifies the correctness of the presented solution. With the real data, the calculated registration results were consistent with the results calculated by iterative methods. Conclusions can be drawn from the two experiments: (1) The proposed solution does not require any initial estimates of the unknown parameters in advance, which assures the stability and robustness of the solution; (2) Using dual quaternions to represent spatial transformation greatly reduces the additional constraints in the estimation process.


Author(s):  
S-T Chiou ◽  
J-C Tzou

It has been shown in a previous work that a frequency term of the shaking force of spatial mechanisms, whose hodograph is proved to be an ellipse, can be eliminated by a pair of contrarotating counterweights. In this work, it is found that the relevant frequency term of the shaking moment is minimized if the balancing shafts are coaxial at the centre of a family of ellipsoids, called isomomental ellipsoids, with respect to (w.r.t.) any point on an ellipsoid, as is also the root mean square (r.m.s.) of the relevant frequency term of the shaking moment. It can also be minimized even though the location of either shaft, but not both, is chosen arbitrarily on a plane. The location of the second shaft is then determinate. In order to locate the centre, a derivation for the theory of isomomental ellipsoids of a frequency term of the shaking moment of spatial mechanisms is given. It is shown that the r.m.s. of a frequency term shaking moment of a spatial mechanism w.r.t. the concentric centre of the isomomental ellipsoids is the minimum. Examples of a seven-link 7-R spatial linkage and a spatial slider-crank mechanism are included.


1997 ◽  
Vol 32 (5) ◽  
pp. 617-628 ◽  
Author(s):  
S.-T. Chiou ◽  
M.-G. Shieh ◽  
R.-J. Tsai
Keyword(s):  

Author(s):  
M. G. Zalyubovs’kyi ◽  
I. V. Panasyuk ◽  
S. O. Koshel’ ◽  
G. V. Koshel’

Author(s):  
Sio-Hou Lei ◽  
Ying-Chien Tsai

Abstract A method for synthesizing the types of spatial as well as planar mechanisms is expressed in this paper by using the concept of phase diagram in metallurgy. The concept represented as a type synthesis technique is applied to (a) planar mechanisms with n degrees of freedom and simple loop, (b) spatial mechanisms with single degree of freedom and simple loop, to enumerate all the possible mechanisms with physically realizable kinematic pairs. Based on the technique described, a set of new reciprocating mechanisms is generated as a practical application.


Author(s):  
Joost R. Leemans ◽  
Charles J. Kim ◽  
Werner W. P. J. van de Sande ◽  
Just L. Herder

Compliant shell mechanisms utilize spatially curved thin-walled structures to transfer or transmit force, motion or energy through elastic deformation. To design with spatial mechanisms designers need comprehensive characterization methods, while existing methods fall short of meaningful comparisons between rotational and translational degrees of freedom. This paper presents two approaches, both of which are based on the principle of virtual loads and potential energy, utilizing properties of screw theory, Plücker coordinates and an eigen-decomposition, leading to two unification lengths that can be used to compare and visualize all six degrees of freedom directions and magnitudes of compliant mechanisms in a non-arbitrary physically meaningful manner.


Sign in / Sign up

Export Citation Format

Share Document