Numerical Representation of Binary Relations with Multiplicative Error Function: A General Case

Author(s):  
Erkut Yusuf Ozbay
2010 ◽  
Vol 38 (3) ◽  
pp. 194-212 ◽  
Author(s):  
Bastian Näser ◽  
Michael Kaliske ◽  
Will V. Mars

Abstract Fatigue crack growth can occur in elastomeric structures whenever cyclic loading is applied. In order to design robust products, sensitivity to fatigue crack growth must be investigated and minimized. The task has two basic components: (1) to define the material behavior through measurements showing how the crack growth rate depends on conditions that drive the crack, and (2) to compute the conditions experienced by the crack. Important features relevant to the analysis of structures include time-dependent aspects of rubber’s stress-strain behavior (as recently demonstrated via the dwell period effect observed by Harbour et al.), and strain induced crystallization. For the numerical representation, classical fracture mechanical concepts are reviewed and the novel material force approach is introduced. With the material force approach at hand, even dissipative effects of elastomeric materials can be investigated. These complex properties of fatigue crack behavior are illustrated in the context of tire durability simulations as an important field of application.


2020 ◽  
Author(s):  
Amanda Bolton

Let $\rho$ be an ultra-unique, reducible topos equipped with a minimal homeomorphism. We wish to extend the results of \cite{cite:0} to trivially Cartan classes. We show that $d$ is comparable to $\mathcal{{M}}$. This leaves open the question of uniqueness. Moreover, a central problem in numerical representation theory is the description of irreducible, orthogonal, hyper-unique graphs.


Author(s):  
Peter Matveevich Mazurkin ◽  
Yana Oltgovna Georgieva

The purpose of the article is the analysis of asymmetric wavelets in binary relations between three coordinates at 290 characteristic points from the source to the mouth of the small river Irovka. The hypsometric characteristic is the most important property of the relief. The Irovka River belongs to a low level, at the mouth it is 89 m high, and at the source it is 148 m above sea level. Modeling of binary relations with latitude, longitude, and height has shown that local latitude receives the greatest quantum certainty. In this case, all paired regularities received a correlation coefficient of more than 0.95. Such a high adequacy of wave patterns shows that geomorphology can go over to the wave multiple fractal representation of the relief. The Irovka River is characterized by a small anthropogenic impact, therefore, the relief over a length of 69 km has the natural character of the oscillatory adaptation of a small river to the surface of the Vyatka Uval from its eastern side. This allows us to proceed to the analysis of the four tributaries of the small river Irovka, as well as to model the relief of the entire catchment basin of 917 km2. The greatest adequacy with a correlation coefficient of 0.9976 was obtained by the influence of latitude on longitude, that is, the geographical location of the relief of the river channel with respect to the geomorphology of the Vyatka Uval. In second place with a correlation of 0.9967 was the influence of the height of the points of the channel of the small river on local longitude and it is also mainly determined by the relief of the Vyatka Uval. In third place was the effect of latitude on height with a correlation coefficient of 0.9859. And in last sixth place is the inverse effect of altitude on local latitude in the North-South direction.


Sign in / Sign up

Export Citation Format

Share Document