A fast and accurate method of ultrasound probe calibration for image-guided surgery

Author(s):  
J. N. Welch ◽  
M. Bax ◽  
K. Mori ◽  
T. Krummel ◽  
R. Shahidi ◽  
...  
2008 ◽  
Vol 2 (2) ◽  
Author(s):  
Basem Fayez Yousef ◽  
Rajni V. Patel ◽  
Mehrdad Moallem

Automating image-guided therapy and registering a medical image to a patient require knowledge of the locations of both the medical image source (e.g., ultrasound) and the surgical tool with respect to a global coordinate system that is known relative to the patient. Also, sturdiness of the medical instrumentations is essential. A novel compact stabilizer-tracker integrated assembly is designed to serve as a holder that can be used to support, manipulate in six degrees-of-freedom, and firmly lock-in-place ultrasound imaging probes and other instruments for use in image-guided surgery as well as to provide the position and orientation of the probe in 3D space with respect to a known reference origin. The stabilizer’s configuration allows a clinician to easily manipulate an ultrasound probe in 3D space, and demonstrate improved sturdiness when locked. A reliable validation technique using forward kinematics was used to evaluate the performance of the holder. Performance tests show that the tracker assembly can acquire the position and orientation of the ultrasound probe with an average displacement accuracy of 0.66mm and roll, pitch, and yaw angular accuracies of 0.24deg, 0.38deg, and 0.19deg, respectively. The improved sturdiness demonstrated by the compact-sized stabilizer and the high accuracy of the tracking mechanism make the integrated holder mechanism well suited for use in image-guided robot-assisted brachytherapy. It is anticipated that this will lead to improvement in accuracy and clinical outcomes for the procedure. The novel tracker can also be used to acquire the positions and orientations of other passive mechanisms of complex designs.


Methods ◽  
2001 ◽  
Vol 25 (2) ◽  
pp. 186-200 ◽  
Author(s):  
Richard D. Bucholz ◽  
Kurt R. Smith ◽  
Keith A. Laycock ◽  
Leslie L. McDurmont

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaojing Shi ◽  
Caiguang Cao ◽  
Zeyu Zhang ◽  
Jie Tian ◽  
Zhenhua Hu

AbstractCerenkov luminescence imaging (CLI) is a novel optical imaging technique that has been applied in clinic using various radionuclides and radiopharmaceuticals. However, clinical application of CLI has been limited by weak optical signal and restricted tissue penetration depth. Various fluorescent probes have been combined with radiopharmaceuticals for improved imaging performances. However, as most of these probes only interact with Cerenkov luminescence (CL), the low photon fluence of CL greatly restricted it’s interaction with fluorescent probes for in vivo imaging. Therefore, it is important to develop probes that can effectively convert energy beyond CL such as β and γ to the low energy optical signals. In this study, a Eu3+ doped gadolinium oxide (Gd2O3:Eu) was synthesized and combined with radiopharmaceuticals to achieve a red-shifted optical spectrum with less tissue scattering and enhanced optical signal intensity in this study. The interaction between Gd2O3:Eu and radiopharmaceutical were investigated using 18F-fluorodeoxyglucose (18F-FDG). The ex vivo optical signal intensity of the mixture of Gd2O3:Eu and 18F-FDG reached 369 times as high as that of CLI using 18F-FDG alone. To achieve improved biocompatibility, the Gd2O3:Eu nanoparticles were then modified with polyvinyl alcohol (PVA), and the resulted nanoprobe PVA modified Gd2O3:Eu (Gd2O3:Eu@PVA) was applied in intraoperative tumor imaging. Compared with 18F-FDG alone, intraoperative administration of Gd2O3:Eu@PVA and 18F-FDG combination achieved a much higher tumor-to-normal tissue ratio (TNR, 10.24 ± 2.24 vs. 1.87 ± 0.73, P = 0.0030). The use of Gd2O3:Eu@PVA and 18F-FDG also assisted intraoperative detection of tumors that were omitted by preoperative positron emission tomography (PET) imaging. Further experiment of image-guided surgery demonstrated feasibility of image-guided tumor resection using Gd2O3:Eu@PVA and 18F-FDG. In summary, Gd2O3:Eu can achieve significantly optimized imaging property when combined with 18F-FDG in intraoperative tumor imaging and image-guided tumor resection surgery. It is expected that the development of the Gd2O3:Eu nanoparticle will promote investigation and application of novel nanoparticles that can interact with radiopharmaceuticals for improved imaging properties. This work highlighted the impact of the nanoprobe that can be excited by radiopharmaceuticals emitting CL, β, and γ radiation for precisely imaging of tumor and intraoperatively guide tumor resection.


Head & Neck ◽  
2021 ◽  
Author(s):  
Sarah Y. Bessen ◽  
Xiaotian Wu ◽  
Michael T. Sramek ◽  
Yuan Shi ◽  
David Pastel ◽  
...  

2014 ◽  
Vol 39 (13) ◽  
pp. 3830 ◽  
Author(s):  
Nan Zhu ◽  
Suman Mondal ◽  
Shengkui Gao ◽  
Samuel Achilefua ◽  
Viktor Gruev ◽  
...  

2007 ◽  
Author(s):  
Peng Cheng ◽  
Luis Ibanez ◽  
David Gobbi ◽  
Kevin Gary ◽  
Stephen Aylward ◽  
...  

1999 ◽  
Vol 280 (6) ◽  
pp. 62-69 ◽  
Author(s):  
W. Eric L. Grimson ◽  
Ron Kikinis ◽  
Ferenc A. Jolesz ◽  
Peter McL. Black

Sign in / Sign up

Export Citation Format

Share Document