Morphological Aspects of Silicon Oxidation in Aqueous Solutions

Author(s):  
Melissa A. Hines
Author(s):  
K. J. Böhm ◽  
a. E. Unger

During the last years it was shown that also by means of cryo-ultra-microtomy a good preservation of substructural details of biological material was possible. However the specimen generally was prefixed in these cases with aldehydes.Preparing ultrathin frozen sections of chemically non-prefixed material commonly was linked up to considerable technical and manual expense and the results were not always satisfying. Furthermore, it seems to be impossible to carry out cytochemical investigations by means of treating sections of unfixed biological material with aqueous solutions.We therefore tried to overcome these difficulties by preparing yeast cells (S. cerevisiae) in the following manner:


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


Sign in / Sign up

Export Citation Format

Share Document