atomic force microscope
Recently Published Documents


TOTAL DOCUMENTS

3841
(FIVE YEARS 287)

H-INDEX

124
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Zheng Wei ◽  
Anjie Peng ◽  
Fengjiao Bin ◽  
Yaxin Chen ◽  
Rui Guan

Abstract Phase image in tapping mode atomic force microscope (TM-AFM) results from various dissipation in microcantilever system. The phases mainly reflected the tip-sample contact dissipations which allowed the nanoscale characteristics to be distinguished. In this research investigation, two factors affecting the phase and phase contrast were analyzed. It was concluded from the theoretical and experimental results that the phases and phase contrasts in the TM-AFM were related to the excitation frequencies and energy dissipation of the system. For a two-component blend, it was theoretically and experimentally proven that there was an optimal excitation frequency for maximizing the phase contrast. Therefore, selecting the optimal excitation frequency could potentially improve the phase contrast results. In addition, only the key dissipation between the tip and sample was found to accurately reflect the sample properties. Meanwhile, the background dissipation could potentially reduce the contrasts of the phase images and even mask or distort the effective information in the phase images. In order to address the aforementioned issues, a self-excited method was adopted in this study in order to eliminate the influencing effects of the background dissipation on the phases. Subsequently, the real phase information of the samples was successfully obtained. It was considered in this study that eliminating the background dissipation had effectively improved the phase contrast results and the real phase information of the samples was accurately reflected. These results are of great significance to optimize the phase of two-component samples and multi-component samples in atomic force microscope.


2022 ◽  
Author(s):  
Sanjeev Kumar Kanth ◽  
Anjli Sharma ◽  
Byong Chon Park ◽  
Woon Song ◽  
Hyun Rhu ◽  
...  

Abstract We have constructed a new nanomanipulator (NM) in a field emission scanning electron microscope (FE-SEM) to fabricate carbon nanotube (CNT) tip to precisely adjust the length and attachment angle of CNT onto the mother atomic force microscope (AFM) tip. The new NM is composed of 2 modules, each of which has the degree of freedom of three-dimensional rectilinear motion x, y and z and one-dimensional rotational motion θ. The NM is mounted on the stage of a FE-SEM. With the system of 14 axes in total which includes 5 axes of FE-SEM and 9 axes of nano-actuators, it was possible to see CNT tip from both rear and side view about the mother tip. With the help of new NM, the attachment angle error could be reduced down to 0º as seen from both the side and the rear view, as well as, the length of the CNT could be adjusted with the precision using electron beam induced etching. For the proper attachment of CNT on the mother tip surface, the side of the mother tip was milled with focused ion beam. In addition, electron beam induced deposition was used to strengthen the adhesion between CNT and the mother tip. In order to check the structural integrity of fabricated CNT, transmission electron microscope image was taken which showed the fine cutting of CNT and the clean surface as well. Finally, the performance of the fabricated CNT tip was demonstrated by imaging 1-D grating and DNA samples with atomic force microscope in tapping mode.


Author(s):  
Luke Oduor Otieno ◽  
Thi Thu Nguyen ◽  
Sang Joon Park ◽  
Yong Joong Lee ◽  
Bernard Ouma Alunda

Author(s):  
А.В. Анкудинов ◽  
М.М. Халисов

Consoles and bridges of MgNi2Si2O5(OH)4 nanoscrolls were tested for bending in atomic force microscope. Using test data, we analyze how the consoles or bridges were fixed, and took this information into account when calculating the Young's modulus of the nanoscrolls. The results on the consoles are in good agreement with the results on the bridges when modeling the latter as three-span beams, and the former as beams on an elastic foundation with a suspended console.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chungman Kim ◽  
Sunghoon Hong ◽  
Dongha Shin ◽  
Sangmin An ◽  
Xingcai Zhang ◽  
...  

AbstractAdditive manufacturing–also known as 3D printing–has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures. However, the current technology still exhibits a limitation in realizing the selective deposition and sorting of various materials contained in the same reservoir, which can contribute significantly to additive printing or manufacturing by enabling simultaneous sorting and deposition of different substances through a single nozzle. Here, we propose a dielectrophoresis (DEP)-based material-selective deposition and sorting technique using a pipette-based quartz tuning fork (QTF)-atomic force microscope (AFM) platform DEPQA and demonstrate multi-material sorting through a single nozzle in ambient conditions. We used Au and silica nanoparticles for sorting and obtained 95% accuracy for spatial separation, which confirmed the surface-enhanced Raman spectroscopy (SERS). To validate the scheme, we also performed a simulation for the system and found qualitative agreement with the experimental results. The method that combines DEP, pipette-based AFM, and SERS may widely expand the unique capabilities of 3D printing and nano-micro patterning for multi-material patterning, materials sorting, and diverse advanced applications. "Image missing"


2021 ◽  
Vol 2086 (1) ◽  
pp. 012204
Author(s):  
D J Rodriguez ◽  
A V Kotosonova ◽  
H A Ballouk ◽  
N A Shandyba ◽  
O I Osotova ◽  
...  

Abstract In this work, we carried out an investigation of commercial atomic force microscope (AFM) probes for contact and semi-contact modes, which were modified by focused ion beam (FIB). This method was used to modify the original tip shape of silicon AFM probes, by ion-etching and ion-enhance gas deposition. we show a better performance of the FIB-modified probes in contrast with the non-modified commercial probes. These results were obtained after using both probes in semi-contact mode in a calibration grating sample.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012100
Author(s):  
M N A Uda ◽  
Subash C B Gopinath ◽  
Uda Hashim ◽  
M N Afnan Uda ◽  
N A Parmin ◽  
...  

Abstract The aim of this research is to study the morphological analysis of fabricated Interdigitated Electrode (IDE). This device electrode was physically characterized using 3D nano profiler, scanning electrode microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX) and Atomic Force Microscope (AFM). Based on this analysis, IDE pattern was analyzed thoroughly based on the IDE pattern specifications with 5 μM finger gap and this research significantly will stand as a platform quantify the biomolecules in further analysis.


Sign in / Sign up

Export Citation Format

Share Document