ultrathin frozen sections
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 0)

H-INDEX

31
(FIVE YEARS 0)

Parasitology ◽  
2006 ◽  
Vol 132 (6) ◽  
pp. 815-825 ◽  
Author(s):  
V. TAUPIN ◽  
G. MÉTÉNIER ◽  
F. DELBAC ◽  
C. P. VIVARÈS ◽  
G. PRENSIER

The microsporidianEncephalitozoon cuniculiis an obligate intracellular parasite that develops asynchronously inside parasitophorous vacuoles. Spore differentiation involves the construction of a cell wall commonly divided into an outer layer (exospore) and a thicker, chitin-rich inner layer (endospore). The developmental patterns of protein deposition and mRNA expression for 2 different spore wall proteins were studied using immunocytochemical andin situhybridization procedures with ultrathin frozen sections. The onset of deposition of an exospore-destined protein (SWP1) correlated with the formation of lamellar protuberances during meront-to-sporont conversion. No evidence for a release of SWP1 towards the parasitophorous vacuole lumen was obtained. An endospore-destined protein (EnP1) was detected early on the plasma membrane of meronts prior to extensive accumulation within the chitin-rich layer of sporoblasts.swp1mRNA was preferentially synthesized in early sporogony whileenp1mRNA was transcribed during merogony and a large part of sporogony. The level of both mRNAs was reduced in mature spores. Considering the availability of theE. cuniculigenome sequence, the application of nucleic and/or protein probes to cryosections should facilitate the screening of various genes for stage-specific expression during microsporidian development.


Author(s):  
C.-L. Na ◽  
H. K. Hagler ◽  
K. H. Muntz

Recent progress in immunocytochemistry and cryo-techniques has made it possible to study receptor localization at the subcellular level. For many receptor-ligand systems suitable antibodies are not available and it would be more appropriate to use radioligands to study these receptors. Although fresh frozen sections have been widely used in light microscopy (LM) autoradiography studies, to our knowledge, no one has established a technique using electron microscope (EM) autoradiography with ultrathin frozen sections.Unlike conventional EM approaches which can extract many biological molecules during dehydration and plastic embedding steps, we have adopted the method of Tokuyasu combined with LM autoradiography protocol for frozen sections to develop a new EM autoradiography technique using ultrathin frozen sections. Heart blocks were fixed in 2% periodate-lysine-paraformaldehyde (PLP) and 0.1% glutaraldehyde (GA), sucrose infused, and frozen in liquid nitrogen. They were sectioned in a Reichert Ultracut S cryo-microtome equipped with a Reichert FCS cryo-unit.


Author(s):  
John M. Robinson ◽  
Toshihiro Takizawa

Ultrathin cryosections are the most favorable material for localization of intracellular antigens with particulate probes (e.g., colloidal gold) in post-embedding immunocytochemistry. Cryosections are prepared under the most benign conditions as compared to embedding samples in various kinds of plastic media. Typically, higher labeling efficiencies can be achieved with ultrathin frozen sections than with plastic sections.We have utilized human neutrophils, the most abundant type of leukocyte, as a model system to explore labeling procedures for ultrathin cryosections. These labeling procedures can serve as alternative or complementary approaches to the traditional colloidal gold label. Neutrophils are characterized by the presence of numerous granules in their cytoplasm. For many years, the model for neutrophil structure has held that there are two granule types in these cells, the socalled azurophilic and specific granules. We have described an additional cytoplasmic compartment with unusual properties in neutrophils. This compartment is characterized by the presence of the enzyme alkaline phosphatase (Fig. 1).


1995 ◽  
Vol 1 (5) ◽  
pp. 217-230
Author(s):  
A. Kent Christensen ◽  
Terry B. Lowry

Ethanol (ethyl alcohol) has long been a standard reagent used in preparing tissues for light and electron microscopy. After fixation, tissues are usually dehydrated with ethanol before being embedded in paraffin or plastic. In this study we show that the ethanol-infiltrated tissue can be frozen and sectioned directly without embedding. When tissue impregnated with ethanol is cooled below about −117°C with liquid nitrogen, the ethanol solidifies without appreciable crystallization. The frozen tissue can then be sectioned in a commercial cryoultramicrotome that is set at −155 to −170°C to produce semithin frozen sections (0.5 to 3 μm thick) for light microscopy or ultrathin frozen sections (50 to 100 nm thick) for electron microscopy. Sections are picked up and mounted on glass slides or EM grids by means that are in current use for ice ultrathin frozen sectioning. Because there is no apparent freezing damage, the morphology in these ethanol frozen sections of unembedded tissue appears generally quite good, often resembling that obtained by conventional EM techniques. Examples are provided that illustrate the use of this material for immunocytochemistry at the light and electron microscope levels.


1994 ◽  
Vol 107 (5) ◽  
pp. 1297-1308
Author(s):  
J.L. Thomas ◽  
A. Stieber ◽  
N. Gonatas

Lately, we have identified two polypeptides of 92–94 kDa (GRL1) and 45–60 kDa (GRL2), expressed in cytoplasmic granules of chicken granulocytes and thrombocytes. Here, we report that GRL1 and GRL2 are widely distributed in all exocrine and several endocrine cell types, but not in neurons of the central nervous system, during late stages of embryonic development, as well as in newly hatched and two-month-old chickens. Immunogold studies in ultrathin frozen sections of pancreatic acinar cells show that GRL1 and GRL2 are co-localized at the periphery of zymogen granules, in granules fused with apical acinar membranes and on apical membranes of acini, while the pregranular compartments of the secretory pathway are weakly or not labeled. Semiquantitative morphometric studies indicate that GRL1 and GRL2 are equally distributed in secretory granules. A variety of physical and metabolic studies reveal that GRL2, a highly N-glycosylated polypeptide, is an intrinsic membrane protein, while GRL1 is a peripheral membrane polypeptide released by Na2CO3 treatment of granulocyte membranes. In all hematopoietic, exocrine or endocrine cells examinated, GRL1 shows identical electrophoretic patterns, while GRL2 is identified as a diffuse band, at 40–65 kDa, in hematopoietic and pancreatic cells. Taken together, the morphological and biochemical studies indicate that GRL1 and GRL2 are components of the secretory granule membrane in chicken exocrine, endocrine and hemopoietic cell types.


1993 ◽  
Vol 178 (6) ◽  
pp. 1935-1946 ◽  
Author(s):  
J W Woods ◽  
J F Evans ◽  
D Ethier ◽  
S Scott ◽  
P J Vickers ◽  
...  

The intracellular distribution of the enzyme 5-lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) in resting and ionophore-activated human leukocytes has been determined using immuno-electronmicroscopic labeling of ultrathin frozen sections and subcellular fractionation techniques. 5-LO is a 78-kD protein that catalyzes the conversion of arachidonic acid to leukotrienes. FLAP is an 18-kD membrane bound protein that is essential for leukotriene synthesis in cells. In response to ionophore stimulation, 5-LO translocates from a soluble to a sedimentable fraction of cell homogenates. In activated leukocytes, both FLAP and 5-LO were localized in the lumen of the nuclear envelope. Neither protein could be detected in any other cell compartment or along the plasma membrane. In resting cells, the FLAP distribution was identical to that observed in activated cells. In addition, subcellular fractionation techniques showed > 83% of immunoblot-detectable FLAP protein and approximately 64% of the FLAP ligand binding activity was found in the nuclear membrane fraction. A fractionation control demonstrated that a plasma membrane marker, detected by a monoclonal antibody PMN13F6, was not detectable in the nuclear membrane fraction. In contrast to FLAP, 5-LO in resting cells could not be visualized along the nuclear envelope. Except for weak labeling of the euchromatin region of the nucleus, 5-LO could not be readily detected in any other cellular compartment. These results demonstrate that the nuclear envelope is the intracellular site at which 5-LO and FLAP act to metabolize arachidonic acid, and that ionophore activation of neutrophils and monocytes results in the translocation of 5-LO from a nonsedimentable location to the nuclear envelope.


Sign in / Sign up

Export Citation Format

Share Document