Sensory Endings in Ligaments: Response Properties and Effects on Proprioception and Motor Control

1997 ◽  
pp. 39-83 ◽  
Author(s):  
P. Sjölander ◽  
H. Johansson
Physiology ◽  
1997 ◽  
Vol 12 (1) ◽  
pp. 37-42 ◽  
Author(s):  
U Proske

A brief, summarizing description is given of the structure and physiology of the mammalian muscle spindle. The question is addressed, What might be the roles of the three different kinds of intrafusal fibers on which the sensory endings lie? The role of muscle spindles in proprioception and in motor control is discussed.


Author(s):  
Tony M. Mosconi ◽  
Min J. Song ◽  
Frank L. Rice

Whiskers or vibrissal follicle-sinus complexes (F-SCs) on the snouts of many mammalian species are structures that have complex, dense sensory innervation. The innervation of F-SCs is remarkably similar in all species with the exception of one site - the inner conical body (ICB). The ICB is an elongated cylindrical structure that encircles the hair shaft near the neck of the follicle. This site has received only cursory attention in ultrastructural studies of the F-SCAdult rats were perfused after the method of Renehan and Munger2. F-SCs were quartered longitudinally and embedded separately in Epon-Araldite. Serial 0.25 μm sections were cut in either the longitudinal or perpendicular plane through the ICB and examined with an AEI EM7 1.2 MV HVEM (Albany, NY) at 1000 KV. Sensory endings were reconstructed from serial micrographs through at least 20 μm in the longitudinal plane and through 10 μm in the perpendicular plane.From two to six small superficial vibrissal nerves converge upon the neck of the F-SC and descend into the ICB. The nerves branch into smaller bundles of myelinated and unmyelinated axons along the dorsal side of the hair shaft.


2010 ◽  
Vol 20 (2) ◽  
pp. 29-36
Author(s):  
Erin M. Wilson ◽  
Ignatius S. B. Nip

Abstract Although certain speech development milestones are readily observable, the developmental course of speech motor control is largely unknown. However, recent advances in facial motion tracking systems have been used to investigate articulator movements in children and the findings from these studies are being used to further our understanding of the physiologic basis of typical and disordered speech development. Physiologic work has revealed that the emergence of speech is highly dependent on the lack of flexibility in the early oromotor system. It also has been determined that the progression of speech motor development is non-linear, a finding that has motivated researchers to investigate how variables such as oromotor control, cognition, and linguistic factors affect speech development in the form of catalysts and constraints. Physiologic data are also being used to determine if non-speech oromotor behaviors play a role in the development of speech. This improved understanding of the physiology underlying speech, as well as the factors influencing its progression, helps inform our understanding of speech motor control in children with disordered speech and provide a framework for theory-driven therapeutic approaches to treatment.


2009 ◽  
Author(s):  
Robert M. Kohl ◽  
Raymond W. McCoy ◽  
Jacob K. Mutch

Sign in / Sign up

Export Citation Format

Share Document