The Relationship between Cortical Electrical Activity, Cerebral Perfusion Pressure, and Cerebral Blood Flow during Increased Intracranial Pressure

Author(s):  
R. G. Grossman ◽  
J. W. Turner ◽  
J. D. Miller ◽  
J. O. Rowan
2004 ◽  
Vol 24 (7) ◽  
pp. 798-804 ◽  
Author(s):  
Flemming Tofteng ◽  
Fin Stolze Larsen

Uncontrolled increase in intracranial pressure (ICP) continues to be one of the most significant causes of early death in patients with acute liver failure (ALF). In this study, we aimed to determine the effects of indomethacin on ICP and cerebral perfusion pressure in twelve patients with ALF and brain edema (9 females/3 males, median age 49,5 (range 21 to 64) yrs.). Also changes in cerebral perfusion determined by transcranial Doppler technique (Vmean) and jugular bulb oxygen saturation (SvjO2) were measured, as well as brain content of lactate and glutamate by microdialysis technique. Finally, we determined the cerebral blood flow autoregulation before and after indomethacin injection. We found that indomethacin reduced ICP from 30 (7 to 53) to 12 (4 to 33) mmHg ( P < 0.05). The cerebral perfusion pressure increased from 48 (0 to 119) to 65 (42 to 129) mmHg ( P < 0.05), while Vmean and SvjO2 on average remained unchanged at 68 (34 to 126) cm/s and 67 (28 to 82) %, respectively. The lactate and glutamate in the brain tissue were not altered (2.1 (1.8 to 7.8) mmol/l and 34 (2 to 268) μmol/l, respectively) after injection of indomethacin. Cerebral blood flow autoregulation was impaired in all patients before injection of indomethacin, but was not restored after administration of indomethacin. We conclude that a bolus injection of indomethacin reduces ICP and increases cerebral perfusion pressure without compromising cerebral perfusion or oxidative metabolism in patients with ALF. This finding indicates that indomethacin may be valuable as rescue treatment of uncontrolled intracranial hypertension in fulminant hepatic failure.


1973 ◽  
Vol 39 (2) ◽  
pp. 186-196 ◽  
Author(s):  
J. Douglas Miller ◽  
Albert E. Stanek ◽  
Thomas W. Langfitt

✓ The effect of brain compression on cerebral blood flow was measured in 13 anesthetized, ventilated dogs by inflation of extradural balloons. The effects of the raised intracranial pressure, so produced, were correlated with the presence or absence of autoregulation of cerebral blood flow to induced changes of arterial pressure, which was tested immediately prior to each episode of inflation of the balloon. Cerebral blood flow was measured by a venous outflow method and monitored continuously, together with arterial and supratentorial intracranial pressure; arterial pCO2 and body temperature were held constant. Three stages were identified. When autoregulation to a change of arterial pressure was intact, initial inflation of the balloon did not reduce cerebral blood flow until the difference between arterial and intracranial pressure (which was taken to represent cerebral perfusion pressure) was less than 40 mm Hg. When autoregulation was impaired, which occurred after the first inflation of the balloon or was due to preceding arterial hypotension, raised intracranial pressure caused an immediate reduction of cerebral blood flow. At this stage of impaired autoregulation there was a tendency for hyperemia to develop on deflation of the balloon. Finally, after repeated inflation and deflation of the balloon, when brain swelling supervened, cerebral blood flow decreased steadily and failed to increase despite induced increases of arterial pressure and cerebral perfusion pressure.


1992 ◽  
Vol 262 (6) ◽  
pp. H1908-H1914 ◽  
Author(s):  
M. Ferrari ◽  
D. A. Wilson ◽  
D. F. Hanley ◽  
R. J. Traystman

This study tested the hypothesis that cerebral blood flow (CBF) is maintained by vasodilation, which manifests itself as a progressive increase in mean transit time (MTT) and cerebral blood volume (CBV) when cerebral perfusion pressure is reduced. Cerebral perfusion pressure was decreased in 10 pentobarbital-anesthetized dogs by controlled hemorrhage. Microsphere-determined CBF was autoregulated in all tested cerebral regions over the 40- to 130-mmHg cerebral perfusion pressure range but decreased by 50% at approximately 30 mmHg. MTT and CBV progressively and proportionately increased in the right parietal cerebral cortex over the 40- to 130-mmHg cerebral perfusion pressure range. Total hemoglobin content (Hb1), measured in the same area by an optical method, increased in parallel with the increases in CBV computed as the (CBF.MTT) product. At 30 mmHg cerebral perfusion pressure, CBV and Hb were still increased and MTT was disproportionately lengthened (690% of control). We conclude that within the autoregulatory range, CBF constancy is maintained by both increased CBV and MTT. Outside the autoregulatory range, substantial prolongation of the MTT occurs. When CBV is maximal, further reductions in cerebral perfusion pressure produce disproportionate increases in MTT that signal the loss of cerebral vascular dilatory hemodynamic reserve.


Author(s):  
W. A. Tweed ◽  
Jørn Overgaard

SUMMARY:The object of this study was to determine if traumatic brain edema (BE) and increased intracranial pressure (ICP) reduce cerebral blood flow (CBF). Two groups of patients were studied, one with slight BE and ICP less than 20 mm Hg., the other with pronounced BE and ICP over 20 mm Hg. Although ICP was higher and cerebral perfusion pressure lower in pro-nounced edema there was only a small and non-significant reduction in CBF and no difference in cerebro-vascular resistance. Since traumatic BE does not increase resistance to blood flow through the brain, cerebral perfusion can be maintained if an adequate perfusion pressure is established. This in turn, demands the monitoring and control of ICP.


Sign in / Sign up

Export Citation Format

Share Document