NAP-Taurine, a Photoaffinity Probe for the Anion Transport System of the Red Blood Cell

Author(s):  
A. Rothstein ◽  
P. A. Knauf ◽  
Z. I. Cabantchik
1976 ◽  
Vol 455 (2) ◽  
pp. 526-537 ◽  
Author(s):  
Z.Ioav Cabantchik ◽  
Philip A. Knauf ◽  
Thomas Ostwald ◽  
Howard Markus ◽  
Lorinda Davidson ◽  
...  

1983 ◽  
Vol 244 (1) ◽  
pp. C68-C74 ◽  
Author(s):  
F. Y. Law ◽  
R. Steinfeld ◽  
P. A. Knauf

Human K562 leukemic cells exhibit several erythroid properties, including synthesis and expression of the major red blood cell sialoglycoprotein, glycophorin. This has led us to ask if these cells express a functional anion transport system analogous to that which is associated with the other major erythrocyte glycoprotein, band 3. The chloride-36 exchange flux in K562 cells is less than 0.6% of that which would be expected in mature erythrocytes under similar conditions. Unlike red blood cells, K562 cells do not exhibit a high chloride-sulfate selectivity, and various agents that inhibit red blood cell chloride exchange are all much less effective in K562 cells. On the basis of these flux measurements, K562 cells probably contain less than 600 fully functional red blood cell-like band 3 molecules per cell, in contrast to about a million molecules in the mature red blood cell. The possible-existence of greatly altered band 3 molecules with a reduced turnover rate and/or a reduced affinity for chloride and for various inhibitors is unlikely but cannot be completely excluded. Anion transport was also measured in K562 cells that had been induced to increase hemoglobin synthesis by various chemical agents. Even under these conditions, chloride fluxes indicated no substantial increase in the number of functional anion transport sites or their chloride transport rate.


1994 ◽  
Vol 299 (3) ◽  
pp. 665-670 ◽  
Author(s):  
G Fricker ◽  
V Dubost ◽  
K Finsterwald ◽  
J L Boyer

The substrate specificity for the transporter that mediates the hepatic uptake of organic anions in freshly isolated hepatocytes of the elasmobranch little skate (Raja erinacea) was determined for bile salts and bile alcohols. The Na(+)-independent transport system exhibits a substrate specificity, which is different from the specificity of Na(+)-dependent bile salt transport in mammals. Unconjugated and conjugated di- and tri-hydroxylated bile salts inhibit uptake of cholyltaurine and cholate competitively. Inhibition is significantly greater with unconjugated as opposed to glycine- or taurine-conjugated bile salts. However, the number of hydroxyl groups in the steroid moiety of the bile salts has only minor influences on the inhibition by the unconjugated bile salts. Since the transport system seems to represent an archaic organic-anion transport system, other anions, such as dicarboxylates, amino acids and sulphate, were also tested, but had no inhibitory effect on bile salt uptake. To clarify whether bile alcohols, the physiological solutes in skate bile, share this transport system, cholyltaurine transport was studied after addition of 5 beta-cholestane-3 beta,5 alpha,6 beta-triol, 5 alpha-cholestan-3 beta-ol and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. These bile alcohols inhibit cholyltaurine uptake non-competitively. In contrast, uptake of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol, which is Na(+)-independent, is not inhibited by cholyltaurine. The findings further characterize a Na(+)-independent organic-anion transport system in skate liver cells, which is not shared by bile alcohols and has preference for unconjugated lipophilic bile salts.


1989 ◽  
Vol 257 (4) ◽  
pp. C601-C606 ◽  
Author(s):  
T. Janas ◽  
P. J. Bjerrum ◽  
J. Brahm ◽  
J. O. Wieth

The capnophorin (band 3)-mediated chloride self exchange flux in intact erythrocytes and in resealed erythrocyte ghosts was determined at pH 7.3 by measuring the unidirectional efflux of 36Cl-. The time-dependent irreversible inactivation of the anion transport system by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) was measured as the relative change of the unidirectional 36Cl efflux rate. The rate of covalent DIDS binding under conditions of excess DIDS in solution that ensure a complete irreversible inhibition followed an exponential time course with a rate coefficient Kcov (min-1). The Arrhenius activation enthalpy of Kcov was constant, 114 kJ/mol, at 0-38 degrees C. At 38 and 0 degrees C, Kcov was 0.5 min-1 [half time (T1/2) = ln2/Kcov = 1.3 min] and 0.004 min-1 (T1/2 = 178 min), respectively. The slow irreversible DIDS binding to the anion transport system at 0 degrees C allows a determination of the kinetics of the reversible DIDS reaction. The pseudo first-order rate constant for binding, kon, was 3.5 X 10(5) (M.s)-1. The apparent dissociation constant, KD, determined from the steady-state binding to the erythrocyte membrane was 3.1 X 10(-8) M at an equal internal and external Cl- concentration of 165 mM (0 degrees C). The value of KD shows that DIDS is the most efficient reversible inhibitor among the stilbene derivatives so far studied. Maximum reversible inhibition by DIDS was obtained by binding of a minimum of approximately 10(6) molecules/cell membrane. The number is similar to that obtained from studies of irreversible DIDS binding.


Sign in / Sign up

Export Citation Format

Share Document