relative change
Recently Published Documents





Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 242
Almudena Marti ◽  
Jurriaan Huskens

Affinity sensing of nucleic acids is among the most investigated areas in biosensing due to the growing importance of DNA diagnostics in healthcare research and clinical applications. Here, we report a simple electrochemical DNA detection layer, based on poly-l-lysine (PLL), in combination with gold nanoparticles (AuNPs) as a signal amplifier. The layer shows excellent reduction of non-specific binding and thereby high contrast between amplified and non-amplified signals with functionalized AuNPs; the relative change in current was 10-fold compared to the non-amplified signal. The present work may provide a general method for the detection of tumor markers based on electrochemical DNA sensing.

IFLA Journal ◽  
2022 ◽  
pp. 034003522110611
Gabriel J Gardner

This article presents a bibliometric analysis of the library and information science literature to trace the emphasis that intellectual freedom and neutrality have received relative to an index of alternative and possibly competing topics. Emphasis is captured longitudinally by recording the number of results for various search terms associated with intellectual freedom, neutrality, diversity, equity, and inclusion in Web of Science from 1993 through 2020 and Library, Information Science and Technology Abstracts from 1970 through 2020. The results show that the number of works mentioning intellectual freedom and neutrality has increased only slightly over the study period, in sharp contrast to many entries on the diversity, equity, and inclusion index. With research interests being partially indicative of personal beliefs and professional activity, the impact of this relative change in emphasis on professional practice is discussed. Public controversies regarding library neutrality, intellectual freedom, and freedom of expression in libraries are summarized.

2022 ◽  
pp. tobaccocontrol-2021-057068
Sukriti KC ◽  
Filippos T Filippidis ◽  
Anthony A Laverty

BackgroundGlobal adoption of standardised packaging requirements for tobacco products is a victory for public health, but their proliferation and impacts rely partly on public support. How this is related to legislation remains underassessed. This study explored change over time in public support for standardised packaging in countries with varying degrees of legislative provisions.MethodsWe used data from 27 European countries, collected from 2017 (n=28, 300) and 2020 (n=27, 901) waves of the Eurobarometer survey, to assess self-reported support for standardised packaging regulations among both smokers and non-smokers. Countries were grouped into three categories of policy adoption (policy implemented; policy legislated; no legislation) and changes in support were assessed using multilevel Poisson regression models.ResultsIn 2020, public support for standardised packaging was 71% (95% CI 68% to 74%) in countries that implemented standardised packaging legislation, 57% (55% to 60%) in countries that had legislated but not yet implemented legislation and 41% (40%to 42%) in countries with no legislation. Compared with 2017, this represented a relative change of +8% (1% to 15%), +12% (5% to 21%) and −5% (95% CI −2% to −8%), respectively, in the three country categories. Among smokers, there was no indication of change in support across the three groups. Among non-smokers, support increased in countries with existing legislation (adjusted prevalence ratio [aPR]=1.14, 95% CI 1.06 to 1.23) and decreased in countries with no legislation (aPR=0.93, 0.90 to 0.97).ConclusionsPublic support for standardised packaging regulations increased in countries implementing and legislating for these measures, particularly among non-smokers. An overall increase in support provides reassurance for policymakers defending policy action on tobacco packaging, as well as for those seeking to implement standardised packaging in their own countries. 

2022 ◽  
Vol 22 (1) ◽  
pp. 335-354
Xiaojian Zheng ◽  
Baike Xi ◽  
Xiquan Dong ◽  
Peng Wu ◽  
Timothy Logan ◽  

Abstract. Over the eastern North Atlantic (ENA) ocean, a total of 20 non-precipitating single-layer marine boundary layer (MBL) stratus and stratocumulus cloud cases are selected to investigate the impacts of the environmental variables on the aerosol–cloud interaction (ACIr) using the ground-based measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the ENA site during 2016–2018. The ACIr represents the relative change in cloud droplet effective radius re with respect to the relative change in cloud condensation nuclei (CCN) number concentration at 0.2 % supersaturation (NCCN,0.2 %) in the stratified water vapor environment. The ACIr values vary from −0.01 to 0.22 with increasing sub-cloud boundary layer precipitable water vapor (PWVBL) conditions, indicating that re is more sensitive to the CCN loading under sufficient water vapor supply, owing to the combined effect of enhanced condensational growth and coalescence processes associated with higher Nc and PWVBL. The principal component analysis shows that the most pronounced pattern during the selected cases is the co-variations in the MBL conditions characterized by the vertical component of turbulence kinetic energy (TKEw), the decoupling index (Di), and PWVBL. The environmental effects on ACIr emerge after the data are stratified into different TKEw regimes. The ACIr values, under both lower and higher PWVBL conditions, more than double from the low-TKEw to high-TKEw regime. This can be explained by the fact that stronger boundary layer turbulence maintains a well-mixed MBL, strengthening the connection between cloud microphysical properties and the below-cloud CCN and moisture sources. With sufficient water vapor and low CCN loading, the active coalescence process broadens the cloud droplet size spectra and consequently results in an enlargement of re. The enhanced activation of CCN and the cloud droplet condensational growth induced by the higher below-cloud CCN loading can effectively decrease re, which jointly presents as the increased ACIr. This study examines the importance of environmental effects on the ACIr assessments and provides observational constraints to future model evaluations of aerosol–cloud interactions.

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 133
Ting Yang ◽  
Xuguang Xing ◽  
Yan Gao ◽  
Xiaoyi Ma

Applying soil amendments plays a critical role in relieving water stress in arid and semiarid areas. The natural clay mineral attapulgite (ATP) can be utilized to adjust the balance of water and soil environment. In this study, we investigated four different particle size distribution typical soils in the Loess Plateau: (1) lou soil (LS), (2) dark loessial soil (DS), (3) cultivated loess soil (CS), (4) sandy soil (SS). Five ATP application rates (0, 1%, 2%, 3%, and 4%) were selected to test the effect of ATP on the soil water retention curve, soil saturated hydraulic conductivity, and soil structure. The results showed that applied ATP significantly increased the soil clay content, and the relative change of SS with 3% ATP applied increased by 53.7%. The field water holding capacity of LS, DS, CS, and SS with 3% ATP applied increased by 8.9%, 9.6%, 18.2%, and 45.0%, respectively. Although applied ATP reduced the saturated hydraulic conductivity, the values of CS and SS were opposite when the amount of ATP applied was >3%. The relative change in the amount of 0.25–1 mm soil water-stable aggregates of SS was 155.9% when 3% ATP was applied. Applied ATP can enhance soil water retention and soil stability, which may improve limited water use efficiency and relieve soil desiccation in arid and semiarid areas or similar hydrogeological areas.

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 335
Qiang Zhang ◽  
Ashwin Iyer ◽  
Krysten Lambeth ◽  
Kang Kim ◽  
Nitin Sharma

Functional electrical stimulation (FES) is a potential neurorehabilitative intervention to enable functional movements in persons with neurological conditions that cause mobility impairments. However, the quick onset of muscle fatigue during FES is a significant challenge for sustaining the desired functional movements for more extended periods. Therefore, a considerable interest still exists in the development of sensing techniques that reliably measure FES-induced muscle fatigue. This study proposes to use ultrasound (US) imaging-derived echogenicity signal as an indicator of FES-induced muscle fatigue. We hypothesized that the US-derived echogenicity signal is sensitive to FES-induced muscle fatigue under isometric and dynamic muscle contraction conditions. Eight non-disabled participants participated in the experiments, where FES electrodes were applied on their tibialis anterior (TA) muscles. During a fatigue protocol under either isometric and dynamic ankle dorsiflexion conditions, we synchronously collected the isometric dorsiflexion torque or dynamic dorsiflexion angle on the ankle joint, US echogenicity signals from TA muscle, and the applied stimulation intensity. The experimental results showed an exponential reduction in the US echogenicity relative change (ERC) as the fatigue progressed under the isometric (R2=0.891±0.081) and dynamic (R2=0.858±0.065) conditions. The experimental results also implied a strong linear relationship between US ERC and TA muscle fatigue benchmark (dorsiflexion torque or angle amplitude), with R2 values of 0.840±0.054 and 0.794±0.065 under isometric and dynamic conditions, respectively. The findings in this study indicate that the US echogenicity signal is a computationally efficient signal that strongly represents FES-induced muscle fatigue. Its potential real-time implementation to detect fatigue can facilitate an FES closed-loop controller design that considers the FES-induced muscle fatigue.

2021 ◽  
James Panton ◽  
J. Davies ◽  
Tim Elliott ◽  
Morten Andersen ◽  
Donald Porcelli ◽  

For mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs), measurements of Pb isotope ratios show broad linear correlations with a certain degree of scatter. In 207Pb/204Pb - 206Pb/204Pb space, the best fit line defines a pseudo-isochron age (τPb) of ~1.9 Gyr.Previous modelling suggests a relative change in the behaviours of U and Pb between 2.25-2.5 Ga, resulting in net recycling of HIMU (high U/Pb) material in the latter part of Earth's history, to explain the observed τPb. However, simulations in which fractionation is controlled by a single set of partition coefficients throughout the model runs fail to reproduce τPb and the observed scatter in Pb isotope ratios. We build on these models with 3D mantle convection simulations including parameterisations for melting, U recycling from the continents and preferential removal of Pb from subducted oceanic crust.We find that both U recycling after the great oxygenation event (GOE) and Pb extraction after the onset of plate tectonics, are required in order to fit the observed gradient and scatter of both the 207Pb/204Pb - 206Pb/204Pb and 208Pb/204Pb - 206Pb/204Pb arrays. Unlike much previous work, our model does not require accumulations of subducted oceanic crust to persist at the CMB for long periods of time in order to match geochemical observations.

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 7
Penghua Zhu ◽  
Jie Zhu ◽  
Xiaofei Xue ◽  
Yongtao Song

Recently, the stretchable piezoresistive composites have become a focus in the fields of the biomechanical sensing and human posture recognition because they can be directly and conformally attached to bodies and clothes. Here, we present a stretchable piezoresistive thread sensor (SPTS) based on Ag plated glass microspheres (Ag@GMs)/solid rubber (SR) composite, which was prepared using new shear dispersion and extrusion vulcanization technology. The SPTS has the high gauge factors (7.8~11.1) over a large stretching range (0–50%) and approximate linear curves about the relative change of resistance versus the applied strain. Meanwhile, the SPTS demonstrates that the hysteresis is as low as 2.6% and has great stability during 1000 stretching/releasing cycles at 50% strain. Considering the excellent mechanical strain-driven characteristic, the SPTS was carried out to monitor posture recognitions and facial movements. Moreover, the novel SPTS can be successfully integrated with software and hardware information modules to realize an intelligent gesture recognition system, which can promptly and accurately reflect the produced electrical signals about digital gestures, and successfully be translated into text and voice. This work demonstrates great progress in stretchable piezoresistive sensors and provides a new strategy for achieving a real-time and effective-communication intelligent gesture recognition system.

2021 ◽  
pp. 831-839
M. Konarik ◽  
M. Sramko ◽  
Z. Dorazilova ◽  
M. Blaha ◽  
I. Netuka ◽  

Mechanical circulatory support (MCS) with an implantable left ventricular assist device (LVAD) is an established therapeutic option for advanced heart failure. Most of the currently used LVADs generate a continuous stream of blood that decreases arterial pulse pressure. This study investigated whether a change of the pulse pressure during different pump speed settings would affect cerebral autoregulation and thereby affect cerebral blood flow (CBF). The study included 21 haemodynamically stable outpatients with a continuous-flow LVAD (HeartMate II, Abbott, USA) implanted a median of 6 months before the study (interquartile range 3 to 14 months). Arterial blood pressure (measured by finger plethysmography) was recorded simultaneously with CBF (measured by transcranial Doppler ultrasound) during baseline pump speed (8900 rpm [IQR 8800; 9200]) and during minimum and maximum tolerated pump speeds (8000 rpm [IQR 8000; 8200] and 9800 rpm [IQR 9800; 10 000]). An increase in LVAD pump speed by 800 rpm [IQR 800; 1000] from the baseline lead to a significant decrease in arterial pulse pressure and cerebral blood flow pulsatility (relative change −24 % and −32 %, both p < 0.01), but it did not affect mean arterial pressure and mean CBF velocity (relative change 1 % and −1.7 %, p=0.1 and 0.7). In stable patients with a continuous-flow LVAD, changes of pump speed settings within a clinically used range did not impair static cerebral autoregulation and cerebral blood flow.

2021 ◽  
Vol 10 (24) ◽  
pp. 5935
Mohammed Ali Ghossein ◽  
Francesco Zanon ◽  
Floor Salden ◽  
Antonius van Stipdonk ◽  
Lina Marcantoni ◽  

Background: Reduction in QRS area after cardiac resynchronization therapy (CRT) is associated with improved long-term clinical outcome. The aim of this study was to investigate whether the reduction in QRS area is associated with hemodynamic improvement by pacing different LV sites and can be used to guide LV lead placement. Methods: Patients with a class Ia/IIa CRT indication were prospectively included from three hospitals. Acute hemodynamic response was assessed as the relative change in maximum rate of rise of left ventricular (LV) pressure (%∆LVdP/dtmax). Change in QRS area (∆QRS area), in QRS duration (∆QRS duration), and %∆LVdP/dtmax were studied in relation to different LV pacing locations within a patient. Results: Data from 52 patients paced at 188 different LV pacing sites were investigated. Lateral LV pacing resulted in a larger %∆LVdP/dtmax than anterior or posterior pacing (p = 0.0007). A similar trend was found for ∆QRS area (p = 0.001) but not for ∆QRS duration (p = 0.23). Pacing from the proximal electrode pair resulted in a larger %∆LVdP/dtmax (p = 0.004), and ∆QRS area (p = 0.003) but not ∆QRS duration (p = 0.77). Within patients, correlation between ∆QRS area and %∆LVdP/dtmax was 0.76 (median, IQR 0.35; 0,89). Conclusion: Within patients, ∆QRS area is associated with %∆LVdP/dtmax at different LV pacing locations. Therefore, QRS area, which is an easily, noninvasively obtainable and objective parameter, may be useful to guide LV lead placement in CRT.

Sign in / Sign up

Export Citation Format

Share Document