History of the Earth’s Atmosphere

Author(s):  
Michael I. Budyko ◽  
Alexander B. Ronov ◽  
Alexander L. Yanshin
Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 731-742 ◽  
Author(s):  
D Lal ◽  
A J T Jull

Nuclear interactions of cosmic rays produce a number of stable and radioactive isotopes on the earth (Lai and Peters 1967). Two of these, 14C and 10Be, find applications as tracers in a wide variety of earth science problems by virtue of their special combination of attributes: 1) their source functions, 2) their half-lives, and 3) their chemical properties. The radioisotope, 14C (half-life = 5730 yr) produced in the earth's atmosphere was the first to be discovered (Anderson et al. 1947; Libby 1952). The next longer-lived isotope, also produced in the earth's atmosphere, 10Be (half-life = 1.5 myr) was discovered independently by two groups within a decade (Arnold 1956; Goel et al. 1957; Lal 1991a). Both the isotopes are produced efficiently in the earth's atmosphere, and also in solids on the earth's surface. Independently and jointly they serve as useful tracers for characterizing the evolutionary history of a wide range of materials and artifacts. Here, we specifically focus on the production of 14C in terrestrial solids, designated as in-situ-produced 14C (to differentiate it from atmospheric 14C, initially produced in the atmosphere). We also illustrate the application to several earth science problems. This is a relatively new area of investigations, using 14C as a tracer, which was made possible by the development of accelerator mass spectrometry (AMS). The availability of the in-situ 14C variety has enormously enhanced the overall scope of 14C as a tracer (singly or together with in-situ-produced 10Be), which eminently qualifies it as a unique tracer for studying earth sciences.


Eos ◽  
1988 ◽  
Vol 69 (38) ◽  
pp. 869 ◽  
Author(s):  
Robert A. Berner

Author(s):  
Donald Eugene Canfield

The air we breathe is 21 percent oxygen, an amount higher than on any other known world. While we may take our air for granted, Earth was not always an oxygenated planet. How did it become this way? This book covers this vast history, emphasizing its relationship to the evolution of life and the evolving chemistry of the Earth. The book guides readers through the various lines of scientific evidence, considers some of the wrong turns and dead ends along the way, and highlights the scientists and researchers who have made key discoveries in the field. Showing how Earth's atmosphere developed over time, the book takes readers on a remarkable journey through the history of the oxygenation of our planet.


Author(s):  
Paul I. Palmer

Nitrogen, oxygen, and argon represent more than 99.9% of the air we breathe. But Earth’s atmosphere hasn’t always had that composition—it is on at least its third distinctive atmosphere. ‘Atmospheric composition’ provides a brief history of Earth’s atmosphere, before considering the two most important regions of the atmosphere for human survival—the stratosphere and troposphere. The stratospheric ozone layer shields harmful ultraviolet-B light penetrating to the surface, thereby protecting humans and ecosystems from harmful ultraviolet radiation. The troposphere is where billions of people live and breathe. It is also where air pollutants are emitted, wildfires burn, vegetation grows, and where the oceans exchange gases. The impact of atmospheric aerosols and greenhouse gases is also discussed.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 929
Author(s):  
Christen Grettenberger ◽  
Dawn Y. Sumner ◽  
Jonathan A. Eisen ◽  
Anne D. Jungblut ◽  
Tyler J. Mackey

The evolution of oxygenic photosynthesis was one of the most transformative evolutionary events in Earth’s history, leading eventually to the oxygenation of Earth’s atmosphere and, consequently, the evolution of aerobic respiration. Previous work has shown that the terminal electron acceptors (complex IV) of aerobic respiration likely evolved after the evolution of oxygenic photosynthesis. However, complex I of the respiratory complex chain can be involved in anaerobic processes and, therefore, may have pre-dated the evolution of oxygenic photosynthesis. If so, aerobic respiration may have built upon respiratory chains that pre-date the rise of oxygen in Earth’s atmosphere. The Melainabacteria provide a unique opportunity to examine this hypothesis because they contain genes for aerobic respiration but likely diverged from the Cyanobacteria before the evolution of oxygenic photosynthesis. Here, we examine the phylogenies of translated complex I sequences from 44 recently published Melainabacteria metagenome assembled genomes and genomes from other Melainabacteria, Cyanobacteria, and other bacterial groups to examine the evolutionary history of complex I. We find that complex I appears to have been present in the common ancestor of Melainabacteria and Cyanobacteria, supporting the idea that aerobic respiration built upon respiratory chains that pre-date the evolution of oxygenic photosynthesis and the rise of oxygen.


Author(s):  
Jan Zalasiewicz

Our planet is ancient—at 4.6 billion years—and over that time it has changed enormously. ‘A very brief history of the Earth’ describes how the Earth and Moon were created in the Chaotian Eon from the collision of two planets: Tellus and Theia. It outlines the heavy meteorite bombardment of the Hadean Eon; the Archean Eon (c.3.8 billion years ago) when rocks were first preserved; the arrival of oxygen in Earth’s atmosphere and explosion of organic life in the Proterozoic Eon; and the Phanerozoic Eon, in which we still live. The various eras of this eon are described: the Palaeozoic Era, the Mesozoic Era, and the Cenozoic Era.


Sign in / Sign up

Export Citation Format

Share Document