Protein Kinase and Phosphatase Regulation During Abscisic Acid Signaling and Ion Channel Regulation in Guard Cells

Author(s):  
Julian I. Schroeder ◽  
Martin Schwarz ◽  
Zhen-Ming Pei
Nature ◽  
1990 ◽  
Vol 344 (6264) ◽  
pp. 336-339 ◽  
Author(s):  
Douglas B. Light ◽  
Jackie D. Corbin ◽  
Bruce A. Stanton

2014 ◽  
Vol 112 (2) ◽  
pp. 613-618 ◽  
Author(s):  
Pengcheng Wang ◽  
Yanyan Du ◽  
Yueh-Ju Hou ◽  
Yang Zhao ◽  
Chuan-Chih Hsu ◽  
...  

The phytohormone abscisic acid (ABA) plays important roles in plant development and adaptation to environmental stress. ABA induces the production of nitric oxide (NO) in guard cells, but how NO regulates ABA signaling is not understood. Here, we show that NO negatively regulates ABA signaling in guard cells by inhibiting open stomata 1 (OST1)/sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6) through S-nitrosylation. We found that SnRK2.6 is S-nitrosylated at cysteine 137, a residue adjacent to the kinase catalytic site. Dysfunction in the S-nitrosoglutathione (GSNO) reductase (GSNOR) gene in the gsnor1-3 mutant causes NO overaccumulation in guard cells, constitutive S-nitrosylation of SnRK2.6, and impairment of ABA-induced stomatal closure. Introduction of the Cys137 to Ser mutated SnRK2.6 into the gsnor1-3/ost1-3 double-mutant partially suppressed the effect of gsnor1-3 on ABA-induced stomatal closure. A cysteine residue corresponding to Cys137 of SnRK2.6 is present in several yeast and human protein kinases and can be S-nitrosylated, suggesting that the S-nitrosylation may be an evolutionarily conserved mechanism for protein kinase regulation.


2021 ◽  
Vol 120 (3) ◽  
pp. 155a
Author(s):  
John W. Hussey ◽  
Emily DeMarco ◽  
Deborah DiSilvestre ◽  
Helene H. Jensen ◽  
Mette Nyegaard ◽  
...  

2011 ◽  
Vol 168 (16) ◽  
pp. 1919-1926 ◽  
Author(s):  
Rayhanur Jannat ◽  
Misugi Uraji ◽  
Miho Morofuji ◽  
Mohammad Muzahidul Islam ◽  
Rachel E. Bloom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document