Seasonal Changes of Dissolved and Particulate Material in the Turbidity Zone of the River Elbe

Author(s):  
U. H. Brockmann ◽  
A. Pfeiffer
River Systems ◽  
2002 ◽  
Vol 13 (3-4) ◽  
pp. 263-283
Author(s):  
Heike Zimmermann-Timm ◽  
Marcus Hoberg ◽  
Holst Henry ◽  
Stefan Müller

Author(s):  
Jerrold L. Abraham

Inorganic particulate material of diverse types is present in the ambient and occupational environment, and exposure to such materials is a well recognized cause of some lung disease. To investigate the interaction of inhaled inorganic particulates with the lung it is necessary to obtain quantitative information on the particulate burden of lung tissue in a wide variety of situations. The vast majority of diagnostic and experimental tissue samples (biopsies and autopsies) are fixed with formaldehyde solutions, dehydrated with organic solvents and embedded in paraffin wax. Over the past 16 years, I have attempted to obtain maximal analytical use of such tissue with minimal preparative steps. Unique diagnostic and research data result from both qualitative and quantitative analyses of sections. Most of the data has been related to inhaled inorganic particulates in lungs, but the basic methods are applicable to any tissues. The preparations are primarily designed for SEM use, but they are stable for storage and transport to other laboratories and several other instruments (e.g., for SIMS techniques).


Author(s):  
Arya K. Bal

In the course of studies in the root meristem tissue of Rubus chamaemorus L. some important changes in the ultrastructural morphology were observed during the initiation of senescence at the end of the growing season.Root meristems were collected from naturally growing healthy populations of Cloudberry plants, and fixed in Karnovsky's mixture or in 2.5% glutaraldehyde in phosphate buffer. The samples were osmicated, dehydrated following usual methods and embedded in Epon. Ultrathin sections were stained in uranyl acetate and lead citrate.Figure 1 shows part of a dense cell in the meristem. The electron density of these cells is due to large amounts of a particulate material in the cytoplasmic matrix. The smallest particle seen in electron micrographs is about 40 A, although larger aggregates are also found, which remain randomly distributed in association with various cell organelles. Dense substance has been found associated with golgi membranes, proplastids, vacuoles and microtubules (Fig. 2).


ASHA Leader ◽  
2013 ◽  
Vol 18 (7) ◽  

Summer kicking into high gear conjures images of swimming pools and barbeques. But before you book your beach house for the weekend, think about what the changing seasons can mean for you professionally.


2002 ◽  
Vol 76 (2) ◽  
pp. 237-245 ◽  
Author(s):  
JONAS ORNBORG ◽  
STAFFAN ANDERSSON ◽  
SIMON C. GRIFFITH ◽  
BEN C. SHELDON

1990 ◽  
Vol 79 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Fumio Yoshie ◽  
Hirohito Arai ◽  
Hideaki Nakashima ◽  
Shoichi Kawano

Sign in / Sign up

Export Citation Format

Share Document